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CHAPTER

ONE

INTRODUCTORY COMMENTS

The following tutorial provides an overview of the C++ programmer interface of the Palabos library. If instead you
are interested in the Python interface, have a look at the Palabos-Python tutorial from DSFD 2010 (PDF). As for the
Java interface, no tutorial is available at this moment. The user’s guide provides however installation instructions, and
you can then have a look at the provided example applications.
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CHAPTER

TWO

TUTORIAL 1: FIRST STEPS WITH PALABOS

2.1 Tutorial 1.1: The first code

To get started under Linux or Mac OS X you need to have the C++ frontend of GCC (g++) installed. Under Mac OS
X, a convenient way to get GCC is to install xcode. If any of the examples fails to compile under Mac OS X, edit the
Makefile, and add the option -DPLB_MAC_OS_X to the entry compileFlags = ....

Note: Windows programmers

Under Windows, you can get started with Palabos in two different ways: either you install the Code::Blocks (code-
blocks) programming environment (choose the download that is packaged with the MinGW library), or you run Linux
in a virtual machine. The first approach is easier and sufficient for the purposes of this tutorial. The second approach
is however more convenient in the long run, because currently, not all features of Palabos (example: the Python and
the Java bindings) are available under Windows.

If you choose to work with Code::Blocks, the following command-line instructions do not apply. Instead, use the
Code::Blocks IDE and create a project for each code of the tutorial.

Download the tarball of the most recent version of Palabos, for example palabos-1.0r0.tgz, and unpack it with
the command tar xvfz palabos-1.0r0.tgz. To use Palabos, you do not need to proceed with an explicit
compilation and installation of the library. Instead, the library is compiled on-demand when end-user applications
are created. This approach reflects the fact that many Palabos users are also developers, and end-user development
is coupled with development of the source core. Furthermore, the approach makes it easy to recompile the code on-
demand with or without debug flags, or for sequential/parallel execution. Finally, it makes it simple to use Palabos on
a machine on which you have no administrator rights.

Change into the directory of the tutorial, palabos/examples/tutorial/section_1, and type make to com-
pile the library and create the executable of the first tutorial code, tutorial_1_1.cpp. Finally, the application is
executed by typing ./tutorial_1_1 at the command line.

This application simulates the time evolution of an initial-value problem, without boundary conditions. The boundaries
are chosen to be periodic, i.e. flow particles leaving the domain on one boundary re-enter the domain on the opposite
boundary. The initial condition has a zero velocity and constant density. On a squared sub-domain of the field, the
density is initialized at a slightly higher value, to create a perturbation which then generates a flow pattern.

This setup is chosen mostly to illustrate programming concepts in Palabos, and not to propose an interesting hydro-
dynamic problem. It should in particular be pointed out that the initial condition does not represent the state of an
incompressible fluid, because the zero velocity is incompatible with a non-zero density. After sufficient iterations,
the flow automatically converges to a situation which is compatible with the physics of an incompressible, or slightly
compressible, flow.

The code tutorial_1_1.cpp is listed below:
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1 /* Code 1.1 in the Palabos tutorial
2 */
3

4 #include "palabos2D.h"
5 #include "palabos2D.hh"
6 #include <iostream>
7 #include <iomanip>
8

9 using namespace plb;
10 using namespace std;
11

12

13 typedef double T;
14 #define DESCRIPTOR plb::descriptors::D2Q9Descriptor
15

16

17 // Initialize the lattice at zero velocity and constant density, except
18 // for a slight density excess on a square sub-domain.
19 void defineInitialDensityAtCenter(MultiBlockLattice2D<T,DESCRIPTOR>& lattice)
20 {
21 // The lattice is of size nx-by-ny
22 const plint nx = lattice.getNx();
23 const plint ny = lattice.getNy();
24

25 // Create a Box2D which describes the location of cells with a slightly
26 // higher density.
27 plint centralSquareRadius = nx/6;
28 plint centerX = nx/3;
29 plint centerY = ny/4;
30 Box2D centralSquare (
31 centerX - centralSquareRadius, centerX + centralSquareRadius,
32 centerY - centralSquareRadius, centerY + centralSquareRadius );
33

34 // All cells have initially density rho ...
35 T rho0 = 1.;
36 // .. except for those in the box "centralSquare" which have density
37 // rho+deltaRho
38 T deltaRho = 1.e-4;
39 Array<T,2> u0(0,0);
40

41 // Initialize constant density everywhere.
42 initializeAtEquilibrium (
43 lattice, lattice.getBoundingBox(), rho0, u0 );
44

45 // And slightly higher density in the central box.
46 initializeAtEquilibrium (
47 lattice, centralSquare, rho0 + deltaRho, u0 );
48

49 lattice.initialize();
50 }
51

52 int main(int argc, char* argv[]) {
53 plbInit(&argc, &argv);
54 global::directories().setOutputDir("./tmp/");
55

56 const plint maxIter = 1000; // Iterate during 1000 steps.
57 const plint nx = 600; // Choice of lattice dimensions.
58 const plint ny = 600;

6 Chapter 2. Tutorial 1: First steps with Palabos
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59 const T omega = 1.; // Choice of the relaxation parameter
60

61 MultiBlockLattice2D<T, DESCRIPTOR> lattice (
62 nx, ny, new BGKdynamics<T,DESCRIPTOR>(omega) );
63

64 lattice.periodicity().toggleAll(true); // Use periodic boundaries.
65

66 defineInitialDensityAtCenter(lattice);
67

68 // Main loop over time iterations.
69 for (plint iT=0; iT<maxIter; ++iT) {
70 if (iT%40==0) { // Write an image every 40th time step.
71 pcout << "Writing GIF file at iT=" << iT << endl;
72 // Instantiate an image writer with the color map "leeloo".
73 ImageWriter<T> imageWriter("leeloo");
74 // Write a GIF file with colors rescaled to the range of values
75 // in the matrix
76 imageWriter.writeScaledGif (
77 createFileName("u", iT, 6),
78 *computeVelocityNorm(lattice) );
79 }
80 // Execute lattice Boltzmann iteration.
81 lattice.collideAndStream();
82 }
83 }

2.1.1 Global definitions and includes

Line 4-7 The include file palabos2D.h gives access to all declarations in the Palabos project. Additionally, the file
palabos2D.hh is included to guarantee access to the full template code, for example to instantiate simulations
with different data types than the standard data type double. The distinction between generic and non-generic
code is explained in the next tutorial.

Line 11-12 These two declarations guarantee an automatic access to the names in the Palabos code, which is contained
in the namespace plb, and to the C++ standard library, which is contained in the namespace std.

Line 14-15 As specified by these two directives, the simulation will be executed with double precision floating point
numbers, and on the two-dimensional D2Q9 lattice.

2.1.2 Creating the initial condition

Line 19 The data type at the heart of Palabos is the MultiBlockLatticeXD, where X stands for 2 or 3, for
2D or 3D simulations. As will be shown shortly, the word Multi stands for the fact that in the internal
implementation, the lattice is often decomposed into several smaller lattices. On the interface however, and this
abstraction mechansim can be confidently used, in a first time at least, to ignore details of the behind-the-scene
action.

Line 27-32 The domain is initialized with a slightly exceeding density on a rectangular sub-domain of the full domain.
This domain is defined through a geometric object of type Box2D.

Line 42 Initialize all lattice cells at an equilibrium distribution with constant density and zero velocity.

Line 46 Then, redefine the initial values for the cell inside the box centralSquare to have a density exceeding
the other ones by deltaRho.

Line 49 The method initialize is called after initialization operations, to prepare the lattice for simulations.

2.1. Tutorial 1.1: The first code 7
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2.1.3 Running the simulation

Line 53 The function plbInit must mandatorily be invoked in the very beginning of the program, to guarantee
consistent results between sequential and parallel program runs.

Line 54 Specify the directory where output files will be placed.

Line 61-62 During creation of the multi block, the default dynamics (in this example BGK), also called background
dynamics, is specified. This object defines the nature of the collision to be executed by all cells, unless a new
individual dynamics is attributed to them in the simulation setup.

Line 64 Periodic boundaries are handled in a special way in Palabos. They can only be imposed on the outer bound
of a block-lattice, through a call to the method periodicity().

Line 73 An image writer object provides a convenient way to write GIF images from simulated data, in 2D or in 3D.
In the latter case, the image represents for example a slice through the computational domain. Such images are
mostly used to monitor the evolution of the simulation, and to get a qualitative idea of the state of the simulation,
before proceeding to a detailed evaluation of the data. To check the images, change into the directory tmp
during or after the simulation, and visualize them for example with help of the command display. To get
an animation from subsequent GIF images, use the command convert (convert -delay 5 u*.gif
animation.gif), and visualize the animated gif through a command like animate animation.gif.

Line 81 The method collideAndStream executes a collision and a streaming step on each cell of the lattice. The
two steps can also be separated by calling first lattice.collide() and then lattice.stream(). The
synchronous execution of collision and streaming is however more efficient, because it requires only a single
traversal of the data space to execute a full lattice Boltzmann iteration. The argument true to the method
collideAndStream or to the method stream is used to implement periodicity for the domain boundaries.
Reversely, the argument false is used for non-periodic boundaries which then implement, by default, a half-
way bounce-back condition. The effect of this condition is to simulate no-slip walls located half a cell spacing
beyond the outer lattice sites.

This tutorial shows that the central structure in which the data of a simulation is stored, is the
MultiBlockLatticeXD. It was chosen this way, because the interface of the MultiBlockLatticeXD mim-
icks regular data arrays with which researchers and engineers are usually familiar from the implementation of simpler
problems in languages like Matlab or Fortran. Another advantage of the “regular-block interface” is the ease with
which individual lattice cells are identified and treated, for example for the implementation of boundary conditions.

If you are unfamiliar with object-oriented programming, it is likely that at this point you start feeling nervous about
this form of data encapsulation and the apparent loss of control over the details of the program workflow. If you
stay focused, you will however progressively understand that the behind-the-scene action is simple enough and by
no means hidden from the understanding of the programmer. Instead, object-oriented mechanisms make it eas-
ier to keep control over a structured and well understood course of action. The principles and mechanisms of the
MultiBlockLatticeXD are presented and trained in the Tutorial 2. In particular, Tutorial 2.1 shows that the
MultiBlockLatticeXD could in practice be replaced by an AtomicBlockLatticeXD, which stands for a
simple regular array, and you should feel free to go ahead and do so. Be aware though that there are in practice only
disadvantages in making this substitution, as one loses for example the possibility to parallelize the program. On the
other hand, it has however been observed that the use of the simple AtomicBlockLatticeXD can help overcome
psychological barriers by providing a sense of control in a first stage of gaining familiarity with Palabos.

2.2 Tutorial 1.2: Initializing the lattice

In the previous lesson, the initial condition was created by assigning a constant value of density and velocity to domains
of rectangular shape. A more detailed initialization of lattice cells is obtained by writing functions in which a different
value of density and velocity is attributed to each cell. This is illustrated in the tutorial code 1.2, tutorial_1_2.
cpp. To compile this code, edit the file Makefile, and replace tutorial_1_1 by tutorial_1_2 in the
corresponding line.

8 Chapter 2. Tutorial 1: First steps with Palabos
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The relevant parts of the code tutorial_1_2.cpp are listed below:

1 const plint maxIter = 1000; // Iterate during 1000 steps.
2 const plint nx = 600; // Choice of lattice dimensions.
3 const plint ny = 600;
4 const T omega = 1.; // Choice of the relaxation parameter
5

6 T rho0 = 1.; // All cells have initially density rho ...
7 // .. except for those inside the disk which have density
8 // rho+deltaRho
9 T deltaRho = 1.e-4;

10 Array<T,2> u0(0,0);
11

12 void initializeConstRho(plint iX, plint iY, T& rho, Array<T,2>& u) {
13 u = u0;
14 rho = rho0 + deltaRho;
15 }
16

17 void initializeRhoOnDisk(plint iX, plint iY, T& rho, Array<T,2>& u) {
18 plint radius = nx/6;
19 plint centerX = nx/3;
20 plint centerY = ny/4;
21 u = u0;
22 if( (iX-centerX)*(iX-centerX) + (iY-centerY)*(iY-centerY) < radius*radius) {
23 rho = rho0 + deltaRho;
24 }
25 else {
26 rho = rho0;
27 }
28 }
29

30 // Initialize the lattice at zero velocity and constant density, except
31 // for a slight density excess on a circular sub-domain.
32 void defineInitialDensityAtCenter(MultiBlockLattice2D<T,DESCRIPTOR>& lattice)
33 {
34 // Initialize constant density everywhere.
35 initializeAtEquilibrium (
36 lattice, lattice.getBoundingBox(), rho0, u0 );
37

38 // And slightly higher density in the central box.
39 initializeAtEquilibrium (
40 lattice, lattice.getBoundingBox(), initializeRhoOnDisk );
41

42 lattice.initialize();
43 }

Line 12 The function initializeConstRho can be used to obtain exactly the same effect as in the previous
lesson: assign a constant density to each cell of a sub-domain.

Line 17 The function initializeRhoOnDisk on the other hand attributes a different density only to cells con-
tained inside a disk. The initial condition is therefore more natural, having a circular instead of a rectangular
shape.

Line 39 This time, the function initializeAtEquilibrium is called with the function
initializeRhoOnDisk as an argument, instead of a constant value of density and velocity. More
generally, the function initializeAtEquilibrium behaves like an algorithm of the C++ standard
template library. It’s argument can be a functional in the general sense, i.e. either a classical function or an
object which behaves like a function by overloading the function call operator. The advantage of using an
object instead of a function is that objects can store internal data and can therefore have a customized behavior.

2.2. Tutorial 1.2: Initializing the lattice 9
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In such a case, the function initializeRhoOnDisk could for example be customized with respect to the
center and radius of the disk. The usage of such a function object is illustrated in the tutorial code 1.4.

2.3 Tutorial 1.3: Compilation options

So far, we have compiled the programs using the default compiler options. Edit the file Makefile to see other
available options

2.3.1 Debug mode

Debug mode is activated in Palabos by setting the flag debug=true. In this mode, the program executes additional
error checking, which can help in locating the source of the error. Furthermore, debug information is put into the
object file, after which you can use a debugger like gdb.

Debug mode is activated by default in all Palabos examples. As a general rule, we recommend that you keep this
flag activated even in production mode. It decreases the overall performance of Palabos by a few percents only, and
provides helpful insights whenever your program crashes.

2.3.2 Parallel mode

All codes presented in this tutorial work in serial and parallel. Be aware, though, that most examples perform lots
of output operations, such as, the generation of GIF images. They are therefore unlikely to run significantly faster in
parallel, unless you comment out the output operations. Compilation for parallel execution is achieved by selecting the
parallel compiler in the line parallelCXX=... of the Makefile, and by setting the flag MPIparallel=true.
The program can the be executed through a call to mpirun, mpiexec, or something similar.

Parallel compilation is activated by default in all Palabos examples: most computers nowadays have multi-core CPUs
which you can exploit by running the Palabos applications in parallel.

2.4 Tutorial 1.4: Data analysis

In this lesson, a few approaches to analyzing the results of a simulation are reviewed. The corresponding code is found
in the file tutorial_1_4.cpp

Let us look at the function main in this code:

1 int main(int argc, char* argv[]) {
2 plbInit(&argc, &argv);
3 global::directories().setOutputDir("./tmp/");
4

5 MultiBlockLattice2D<T, DESCRIPTOR> lattice (
6 nx, ny, new BGKdynamics<T,DESCRIPTOR>(omega) );
7

8 lattice.periodicity().toggleAll(true); // Set periodic boundaries.
9

10 defineInitialDensityAtCenter(lattice);
11

12 // First part: loop over time iterations.
13 for (plint iT=0; iT<maxIter; ++iT) {
14 lattice.collideAndStream();
15 }
16

10 Chapter 2. Tutorial 1: First steps with Palabos
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17 // Second part: Data analysis.
18 Array<T,2> velocity;
19 lattice.get(nx/2, ny/2).computeVelocity(velocity);
20 pcout << "Velocity in the middle of the lattice: ("
21 << velocity[0] << "," << velocity[1] << ")" << endl;
22

23 pcout << "Velocity norm along a horizontal line: " << endl;
24 Box2D line(0, 100, ny/2, ny/2);
25 pcout << setprecision(3) << *computeVelocityNorm(*extractSubDomain(lattice,

→˓line)) << endl;
26

27 plb_ofstream ofile("profile.dat");
28 ofile << setprecision(3) << *computeVelocityNorm(*extractSubDomain(lattice,

→˓line)) << endl;
29

30 pcout << "Average density in the domain: " << computeAverageDensity(lattice) <<
→˓endl;

31 pcout << "Average energy in the domain: " << computeAverageEnergy(lattice) <<
→˓endl;

32 }

Line 19 The method get delivers access to a lattice cell. A cell is an object with which one can not only access
the actual variables defined on the cell, but also perform useful computations, such as, evaluate macroscopic
variables. In this example, the velocity is computed on a cell in the middle of the domain.

Line 25 With the method extractSubDomain, a rectangular sub domain of the full lattice is extracted. In the
present example, the velocity norm is computed on the extracted domain and printed to the terminal.

Line 27 In the same way, C++ streams are used to write the data into a file instead of the terminal. Make sure to use
the data type plb_ofstream instead of ofstream to guarantee working conditions in parallel programs.

Line 30-31 Many functions are predefined for computing average values, like the average density or the average
kinetic energy in the present example.

The data written to the file profile.dat is conveniently post-processed with a mathematics processing tool. For
example, type the two following lines at the command prompt of the program Octave to plot a curve of the velocity
profile:

load profile.dat
plot(profile)

2.5 Tutorial 1.5: Boundary conditions

For the first time, we implement a simulation which represents a well-known physical situation: a Poiseuille flow. This
flow evolves in a channel with no-slip walls, and the flow velocity is everywhere parallel to the channel walls. The
analytical solution of this flow is represented by a parabolic profile for the velocity component parallel to the channel
walls. In the simulation, the analytical solution is used to implement Dirichlet boundary condition for the velocity
on the domain inlet and outlet. As an initial condition, a zero velocity field is used, and the simulation is started to
converge towards the Poiseuille solution in each point of the domain.

Note that the simulation has initially a discontinuity between the zero velocity in the initial condition and the finite
velocity in the boundary condition. If the simulation becomes numerically unstable when you play with the parameters,
try either increasing the lattice resolution or decreasing the velocity in lattice units.

This time, the full code is reprinted in the tutorial:

2.5. Tutorial 1.5: Boundary conditions 11
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1 #include "palabos2D.h"
2 #include "palabos2D.hh"
3

4 #include <vector>
5 #include <iostream>
6 #include <iomanip>
7

8 /* Code 1.5 in the Palabos tutorial
9 */

10

11 using namespace plb;
12 using namespace std;
13

14 typedef double T;
15 #define DESCRIPTOR plb::descriptors::D2Q9Descriptor
16

17

18 /// Velocity on the parabolic Poiseuille profile
19 T poiseuilleVelocity(plint iY, IncomprFlowParam<T> const& parameters) {
20 T y = (T)iY / parameters.getResolution();
21 return 4.*parameters.getLatticeU() * (y-y*y);
22 }
23

24 /// A functional, used to initialize the velocity for the boundary conditions
25 template<typename T>
26 class PoiseuilleVelocity {
27 public:
28 PoiseuilleVelocity(IncomprFlowParam<T> parameters_)
29 : parameters(parameters_)
30 { }
31 /// This version of the operator returns the velocity only,
32 /// to instantiate the boundary condition.
33 void operator()(plint iX, plint iY, Array<T,2>& u) const {
34 u[0] = poiseuilleVelocity(iY, parameters);
35 u[1] = T();
36 }
37 /// This version of the operator returns also a constant value for
38 /// the density, to create the initial condition.
39 void operator()(plint iX, plint iY, T& rho, Array<T,2>& u) const {
40 u[0] = poiseuilleVelocity(iY, parameters);
41 u[1] = T();
42 rho = (T)1;
43 }
44 private:
45 IncomprFlowParam<T> parameters;
46 };
47

48 void channelSetup (
49 MultiBlockLattice2D<T,DESCRIPTOR>& lattice,
50 IncomprFlowParam<T> const& parameters,
51 OnLatticeBoundaryCondition2D<T,DESCRIPTOR>& boundaryCondition )
52 {
53 // Create Velocity boundary conditions.
54 boundaryCondition.setVelocityConditionOnBlockBoundaries(lattice);
55

56 // Specify the boundary velocity.
57 setBoundaryVelocity (
58 lattice, lattice.getBoundingBox(),

12 Chapter 2. Tutorial 1: First steps with Palabos
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59 PoiseuilleVelocity<T>(parameters) );
60

61 // Create the initial condition.
62 initializeAtEquilibrium (
63 lattice, lattice.getBoundingBox(), PoiseuilleVelocity<T>(parameters) );
64

65 lattice.initialize();
66 }
67

68 void writeGifs(MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint iter)
69 {
70 const plint imSize = 600;
71 ImageWriter<T> imageWriter("leeloo");
72 imageWriter.writeScaledGif(createFileName("u", iter, 6),
73 *computeVelocityNorm(lattice),
74 imSize, imSize );
75 }
76

77 int main(int argc, char* argv[]) {
78 plbInit(&argc, &argv);
79

80 global::directories().setOutputDir("./tmp/");
81

82 // Use the class IncomprFlowParam to convert from
83 // dimensionless variables to lattice units, in the
84 // context of incompressible flows.
85 IncomprFlowParam<T> parameters(
86 (T) 1e-2, // Reference velocity (the maximum velocity
87 // in the Poiseuille profile) in lattice units.
88 (T) 100., // Reynolds number
89 100, // Resolution of the reference length (channel height).
90 2., // Channel length in dimensionless variables
91 1. // Channel height in dimensionless variables
92 );
93 const T imSave = (T)0.1; // Time intervals at which to save GIF
94 // images, in dimensionless time units.
95 const T maxT = (T)3.1; // Total simulation time, in dimensionless
96 // time units.
97

98 writeLogFile(parameters, "Poiseuille flow");
99

100 MultiBlockLattice2D<T, DESCRIPTOR> lattice (
101 parameters.getNx(), parameters.getNy(),
102 new BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );
103

104 OnLatticeBoundaryCondition2D<T,DESCRIPTOR>*
105 boundaryCondition = createLocalBoundaryCondition2D<T,DESCRIPTOR>();
106

107 channelSetup(lattice, parameters, *boundaryCondition);
108

109 // Main loop over time iterations.
110 for (plint iT=0; iT*parameters.getDeltaT()<maxT; ++iT) {
111 if (iT%parameters.nStep(imSave)==0 && iT>0) {
112 pcout << "Saving Gif at time step " << iT << endl;
113 writeGifs(lattice, iT);
114 }
115 // Execute lattice Boltzmann iteration.
116 lattice.collideAndStream();

2.5. Tutorial 1.5: Boundary conditions 13
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117 }
118

119 delete boundaryCondition;
120 }

2.5.1 Poiseuille profile

Line 20 This function computes the parabolic Poiseuille profile, in a channel of a given height, and with a given
maximum velocity in the middle of the channel. The object IncomprFlowParam is discussed below: it
stores various parameters of the simulation.

Line 26-47 This is an example for a so-called function object, or functional. It is a class which overloads the function
call operator, operator(). Instances of this class behave like normal functions, but the object is more intelli-
gent than a pure function. It can for example accept parameters at the constructor and possess a configurable
behavior. The present function object encapsulates the function poiseuilleVelocity and is configured
with an object of type IncomprFlowParam. This is a useful trick to avoid the need for declaring simulation
parameters as global variables and making them accessible to everyone, as we did in the code 1.2.

Line 55 Specify that all exterior boundaries of the domain implement a Dirichlet boundary condition for the velocity.
At this point, the value of the velocity on the boundaries is yet undefined.

Line 58 Define the value of the velocity on boundary nodes from the analytical Poiseuille profile. Note that although
this function is applied to the entire domain, it has an effect only of nodes which have been previously defined
as being Dirichlet boundary nodes.

2.5.2 Simulation parameters and boundary condition

Line 86 An object of type IncomprFlowParam stores the parameters of the simulation (Reynolds number, lattice
resolution, reference velocity in lattice units, etc.), and performs unit conversions. It is for example used to
compute automatically the relaxation parameter omega from the Reynolds number.

Line 105 Choose the algorithm which is used to implement the boundary condition. The type
LocalBoundaryCondition implements the regularized boundary condition, which is entirely local
(it doesn’t need to acces neighbor nodes). The type InterpBoundaryCondition uses finite difference
schemes to compute the strain rate tensor on walls, and is therefore non-local.

2.6 Tutorial 1.6: 3D Channel flow

To keep everything as simple as possible, all tutorials so far were based on 2D simulations. Turning to 3D is pretty
easy, though. Let’s reconsider the Poiseuille flow from the previous tutorial and implement in 3D. The resulting code,
shown below, can also be found in the file lesson_1_6.cpp:

1 #include "palabos3D.h"
2 #include "palabos3D.hh"
3 #include <vector>
4 #include <iostream>
5 #include <iomanip>
6

7

8 /* Code 1.6 in the Palabos tutorial
9 */

10

11 using namespace plb;
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12 using namespace std;
13

14 typedef double T;
15 #define DESCRIPTOR plb::descriptors::D3Q19Descriptor
16

17

18 /// Velocity on the parabolic Poiseuille profile
19 T poiseuilleVelocity(plint iY, plint iZ, IncomprFlowParam<T> const& parameters) {
20 T y = (T)iY / parameters.getResolution();
21 T z = (T)iZ / parameters.getResolution();
22 return 4.*parameters.getLatticeU() * (y-y*y) * (z-z*z);
23 }
24

25 /// A functional, used to initialize the velocity for the boundary conditions
26 template<typename T>
27 class PoiseuilleVelocity {
28 public:
29 PoiseuilleVelocity(IncomprFlowParam<T> parameters_)
30 : parameters(parameters_)
31 { }
32 void operator()(plint iX, plint iY, plint iZ, Array<T,3>& u) const {
33 u[0] = poiseuilleVelocity(iY, iZ, parameters);
34 u[1] = T();
35 u[2] = T();
36 }
37 private:
38 IncomprFlowParam<T> parameters;
39 };
40

41 void channelSetup( MultiBlockLattice3D<T,DESCRIPTOR>& lattice,
42 IncomprFlowParam<T> const& parameters,
43 OnLatticeBoundaryCondition3D<T,DESCRIPTOR>& boundaryCondition )
44 {
45 // Create Velocity boundary conditions
46 boundaryCondition.setVelocityConditionOnBlockBoundaries(lattice);
47

48 setBoundaryVelocity (
49 lattice, lattice.getBoundingBox(),
50 PoiseuilleVelocity<T>(parameters) );
51

52 lattice.initialize();
53 }
54

55 void writeGifs(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint iter)
56 {
57 const plint imSize = 600;
58 const plint nx = lattice.getNx();
59 const plint ny = lattice.getNy();
60 const plint nz = lattice.getNz();
61 Box3D slice(0, nx-1, 0, ny-1, nz/2, nz/2);
62 ImageWriter<T> imageWriter("leeloo");
63 imageWriter.writeScaledGif(createFileName("u", iter, 6),
64 *computeVelocityNorm(lattice, slice),
65 imSize, imSize );
66 }
67

68 int main(int argc, char* argv[]) {
69 plbInit(&argc, &argv);

2.6. Tutorial 1.6: 3D Channel flow 15



Palabos Tutorial, Release 1.0r0

70

71 global::directories().setOutputDir("./tmp/");
72

73 // Use the class IncomprFlowParam to convert from
74 // dimensionless variables to lattice units, in the
75 // context of incompressible flows.
76 IncomprFlowParam<T> parameters(
77 (T) 1e-2, // Reference velocity (the maximum velocity
78 // in the Poiseuille profile) in lattice units.
79 (T) 100., // Reynolds number
80 30, // Resolution of the reference length (channel height).
81 3., // Channel length in dimensionless variables
82 1., // Channel height in dimensionless variables
83 1. // Channel depth in dimensionless variables
84 );
85 const T imSave = (T)0.02; // Time intervals at which to save GIF
86 // images, in dimensionless time units.
87 const T maxT = (T)2.5; // Total simulation time, in dimensionless
88 // time units.
89

90 writeLogFile(parameters, "3D Poiseuille flow");
91

92 MultiBlockLattice3D<T, DESCRIPTOR> lattice (
93 parameters.getNx(), parameters.getNy(), parameters.getNz(),
94 new BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );
95

96 OnLatticeBoundaryCondition3D<T,DESCRIPTOR>*
97 //boundaryCondition = createInterpBoundaryCondition3D<T,DESCRIPTOR>();
98 boundaryCondition = createLocalBoundaryCondition3D<T,DESCRIPTOR>();
99

100 channelSetup(lattice, parameters, *boundaryCondition);
101

102 // Main loop over time iterations.
103 for (plint iT=0; iT*parameters.getDeltaT()<maxT; ++iT) {
104 if (iT%parameters.nStep(imSave)==0) {
105 pcout << "Saving Gif at time step " << iT << endl;
106 writeGifs(lattice, iT);
107 }
108 // Execute lattice Boltzmann iteration.
109 lattice.collideAndStream();
110 }
111

112 delete boundaryCondition;
113 }

The few lines which have changed from the 2D to the 3D code are the following:

Line 1 and 3 The header files palabos2D.h and palabos2D.hh are replaced by their 3D counterpart.

Line 16 On this line, the type of lattice is chosen. While in 2D the only available nearest-neighbor lattice is D2Q9
(D2Q7 is currently not supported), there are 3 choices in 3D: D3Q15, D3Q19, and D3Q27.

Line 19 To set up a Dirichlet condition for the inlet and the outlet, an analytic velocity profile is proposed. There
exists an analytical solution for 3D channel flow, but we do not use it here to keep the code simple. Instead, the
velocity profile is formulated as a tensor product of the 2D Poiseuille flow, once in each of the two axes parallel
to the inlet and outlet.

Line 26-39 The function object which is used to instantiate the boundary conditions has the same form in 3D as in
2D. This time, the function call operator takes three arguments, the three space dimensions, and returns a 3D
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velocity vector.

Line 41 Initialization of the geometry is exactly identical as in the previous 2D Poiseuille flow, except that the exten-
sion 2D is replaced by 3D in all keywords.

Line 55 It remains useful to write regularly GIF snapshots of the flow to monitor the flow evolution in a simple way.
A 2D slice needs to be extraced from the full domain to produce an image.

Line 76 It is possible to provide the class IncomprFlowParam with an additional argument to indicate the extent of
the domain in z-direction in the 3D case.

Line 92 The central object of the simulation, the MultiBlockLattice2D, is replaced by a
MultiBlockLattice3D.

2.7 Tutorial 1.7: Post-processing with Paraview

In previous tutorials, two approaches to analyzing the computed numerical data have been used. The first consists of
using the class ImageWriter to produce GIF snapshots of the velocity norm, or other scalar flow variables, during
the simulation. This approach is particularly useful for obtaining a qualitative impression of the evolution of the flow,
and for being able to interrupt the simulation when errors appear. Another, more quantitative approach, consists of
writing the data into a file, using a plain ASCII format. In this case, the data stream is linearized, which means that
structural information, such as the size of the domain in each space dimension, is lost. In the following code, based on
the previous tutorial, the velocity is for example computed on a slice perpendicular to the z-axis, and written into an
ASCII file:

// Attribute a value to nx, ny, and nz.
Box3D slice(0, nx-1, 0, ny-1, nz/2, nz/2);
plb_ofstream ofile("slice.dat");
ofile << setprecision(4) << *computeVelocityNorm(lattice, slice) << endl;

As you can see, the C++ stream operators have been overloaded for this task. This means that the output can be
formated using I/O manipulators like setprecision(n) to chose the numerical precision, setw(n) to format
each number in a cell of fixed width, or fixed respectively scientific to chose the representation of floating
point variables. The flow field stored in the file slice.dat can for example be analyzed with help of the open-
source program Octave. For this, you need to know the values of nx, ny and nz, because they are not stored in the
file:

% Matlab/Octave script
% Assign a value to nx and ny
load slice.dat
slice = reshape(slice, nx, ny);
imagesc(slice)

In the present tutorial, an additional approach is shown in which the data is written into a file in a so-called VTK format,
after which it can be analyzed with a general post-processing tool. The following function is used in the tutorial code
tutorial_1_7 to write VTK data of the 3D Poiseuille flow presented in tutorial 1.6:

void writeVTK(MultiBlockLattice3D<T,DESCRIPTOR>& lattice,
IncomprFlowParam<T> const& parameters, plint iter)

{
T dx = parameters.getDeltaX();
T dt = parameters.getDeltaT();
VtkImageOutput3D<T> vtkOut(createFileName("vtk", iter, 6), dx);
vtkOut.writeData<float>(*computeDensity(lattice), "density", 1.);
vtkOut.writeData<3,float>(*computeVelocity(lattice), "velocity", dx/dt);

}
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The data in the VTK file is represented in dimensionless variables. For this, the variable dx is given to the constructor
of the VtkImageOutput3D object in order to indicate the size of a cell spacing. Furthermore, every variable which
is written needs to be rescaled according to its units, namely 1. for the density and dx/dt for the velocity. A few
comments on the VTK output are in order:

• The VTK files can hold an arbitrary number of fields, which are written one after another with the command
writeData. In case of Vector fields, the number of components of the vector needs to be indicated as a
template argument.

• The data is written in binary format, using the binary-encoded ASCII format Base64 for compatibility. There-
fore, unlike the plain ASCII output used previously, the VTK format does not loose any digit of precision.

• In the above example, the data is converted from double to float to save space on the disk.

The open-source program Paraview provides a convenient interactive interface for analyzing the data. To end this
tutorial, you are encouraged to run the program tutorial_1_7, install Paraview on your system and analyze the
output. Among others, Paraview can easily produce an animation from the written image series.
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CHAPTER

THREE

TUTORIAL 2: UNDERSTANDING THE MULTI-BLOCK STRUCTURE

The code structure of Palabos programs is driven by the duality between atomic-blocks, which represent regular data-
arrays, and complex multi-blocks. Thanks to a practically identical interface, they appear to the user on a seemingly
equal footing. In reality, however, there exists a hierarchical relationship bewteen them. The multi-block is actually a
composite construct of several adjacent blocks and uses itself atomic-blocks for its internal implementation. Atomic-
and multi-blocks come in three flavors: the (multi-) block-lattice which holds lattice Boltzmann variables, the (multi-)
scalar-field for scalar data-arrays, and the (multi-) tensor-field for vector- or tensor-valued data-arrays.

Tutorial 2.1 exploits the similarity of interface between atomic-blocks and multi-blocks, and rewrites a program from
Tutorial 1, replacing the multi block-lattice by a plain block-lattice. Tutorial 2.2 provides further insight in the multi-
block and gives the user the possibility to construct such an object manually by explicitly specifying the position of
the consisting atomic-blocks. In tutorial 2.3, a multi-block (or for all means, an atomic-block) is manipulated through
the explicit use of so-called data processors. They provide explicit access to atomic-block cells inside a multi-block,
even if the internal structure of the multi-block is unknown to the user. Tutorial 2.4 finally explains how a program is
parallelized (again manually for didactic purposes) by attributing the components of a multi-block to different threads.

Warning: The purpose of Tutorial 2 is to provide deeper insight into the mechanisms of Palabos, and not to
establish good coding practice. As already mentioned, you should in practice always prefer multi-blocks over
atomic-blocks at the end-user level, in spite of the counter-example shown in Tutorial 2.1.

3.1 Tutorial 2.1: Formulating a program with an atomic-block

In Tutorial 1.5: Boundary conditions, a simulation for a 2D Poiseuille flow was presented, which used the data
structure MultiBlock2D to hold the data. This is the right way of doing, because it is recommended to use multi-
block structures for practically all purposes in end-user programs. Strictly speaking, a non-parallel version of this
program could however also be coded using a simpler data structure, because of the simple, rectangular shape of the
domain. Such a conversion is straightforward in Palabos, because most of the code is generic and works identically for
atomic-blocks and multi-blocks. As it can be seen on the following code, also found in the file tutorial_2_1.cpp,
it is sufficient to replace the keyword MultiBlockLattice2D by BlockLattice2D at two places:

1 /* Code 2.1 in the Palabos tutorial
2 */
3

4 // ... Definition of the Poiseuille profile, and instantiation of the geometry are
5 // exactly identical with a multi-block or an atomic-block
6

7

8 // Multi-Block version of tutorial 1.5:
9 // void writeGifs(MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint iter)

10 // { ...

19



Palabos Tutorial, Release 1.0r0

11

12 // Atomic-Block version of tutorial 2.1:
13 void writeGifs(BlockLattice2D<T,DESCRIPTOR>& lattice, plint iter)
14 {
15 // ...
16

17 int main(int argc, char* argv[])
18 {
19 // ... Definition of the parameters are identical in both versions
20

21 // Multi-Block version of tutorial 1.5:
22 // MultiBlockLattice2D<T, DESCRIPTOR> lattice (
23 // parameters.getNx(), parameters.getNy(),
24 // new BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );
25

26 // Atomic-Block version of tutorial 2.1:
27 BlockLattice2D<T, DESCRIPTOR> lattice (
28 parameters.getNx(), parameters.getNy(),
29 new BGKdynamics<T,DESCRIPTOR>(parameters.getOmega()) );
30

31 // ... Creating the initial condition and running the simulation is
32 // identical in both versions
33 }

Although very little has changed on the surface, the algorithm instantiated in the above code is much simpler than in
the multi-block case. You can view the BlockLattice2D as a simple nx-by-ny-by-9 value array, just as you would use
it in a straightforward example lattice Boltzmann code.

As you progress with your work with Palabos, you will learn to appreciate the abstraction mechanism through which
the complex multi-block behaves like a regular construct. In practical work, it offers a relatively simple way to cope
with complicated constructs.
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3.2 Tutorial 2.2: Creating a multi-block structure manually

One of the uses of the multi-block consists in the memory-efficient implementation of sparse domains. To understand this, consider the following 2D fluid problem:

The fluid is confined in a channel shaped like a half-circle. Pressure boundary conditions are used with an appropriate difference between inlet and outlet, responsible for driving the fluid through the channel. It is obviously memory wasting to represent this problem by a regular matrix structure, because a large area in the interior of the half-circle is unused. This is therefore a typical candidate for a sparse domain implementation. While the sparse structure of a multi-block is usually automatically created by an appropriate tool, it is in the following created manually for didactical reasons. We choose an approach in which the channel is covered by three blocks, while the fourth block, in the center of the half-circle, is left void, as indicated by the black area on the following image:

The construction of this sparse domain is done in the code tutorial_2_2.cpp, it is integrally printed here (without
the usual header lines):

1 /// Describe the geometry of the half-circular channel, used in tutorial 2.
2 template<typename T>
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3 class BounceBackNodes : public DomainFunctional2D {
4 public:
5 BounceBackNodes(plint N, plint radius)
6 : cx(N/2),
7 cy(N/2),
8 innerR(radius),
9 outerR(N/2)

10 { }
11 /// Return true for all cells outside the channel, on which bounce-back
12 /// dynamics must be instantiated.
13 virtual bool operator() (plint iX, plint iY) const {
14 T rSqr = util::sqr(iX-cx) + util::sqr(iY-cy);
15 return rSqr <= innerR*innerR || rSqr >= outerR*outerR;
16 }
17 virtual BounceBackNodes<T>* clone() const {
18 return new BounceBackNodes<T>(*this);
19 }
20 private:
21 plint cx; //< X-position of the center of the half-circle.
22 plint cy; //< Y-position of the center of the half-circle.
23 plint innerR; //< Outer radius of the half-circle.
24 plint outerR; //< Inner radius of the half-circle.
25 };
26

27

28 void halfCircleSetup (
29 MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint N, plint radius,
30 OnLatticeBoundaryCondition2D<T,DESCRIPTOR>& boundaryCondition )
31 {
32 // The channel is pressure-driven, with a difference deltaRho
33 // between inlet and outlet.
34 T deltaRho = 1.e-2;
35 T rhoIn = 1. + deltaRho/2.;
36 T rhoOut = 1. - deltaRho/2.;
37

38 Box2D inlet (0, N/2, N/2, N/2);
39 Box2D outlet(N/2+1, N, N/2, N/2);
40

41 boundaryCondition.addPressureBoundary1P(inlet, lattice);
42 boundaryCondition.addPressureBoundary1P(outlet, lattice);
43

44 // Specify the inlet and outlet density.
45 setBoundaryDensity (lattice, inlet, rhoIn);
46 setBoundaryDensity (lattice, outlet, rhoOut);
47

48 // Create the initial condition.
49 Array<T,2> zeroVelocity(0.,0.);
50 T constantDensity = (T)1;
51 initializeAtEquilibrium (
52 lattice, lattice.getBoundingBox(), constantDensity, zeroVelocity );
53

54 defineDynamics(lattice, lattice.getBoundingBox(),
55 new BounceBackNodes<T>(N, radius),
56 new BounceBack<T,DESCRIPTOR>);
57

58 lattice.initialize();
59 }
60
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61 void writeGifs(MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint iter)
62 {
63 const plint imSize = 600;
64 ImageWriter<T> imageWriter("leeloo");
65 imageWriter.writeScaledGif(createFileName("u", iter, 6),
66 *computeVelocityNorm(lattice),
67 imSize, imSize );
68 }
69

70 int main(int argc, char* argv[]) {
71 plbInit(&argc, &argv);
72

73 global::directories().setOutputDir("./tmp/");
74

75 // Parameters of the simulation
76 plint N = 400; // Use a 400x200 domain.
77 plint maxT = 20001;
78 plint imageIter = 1000;
79 T omega = 1.;
80 plint radius = N/3; // Inner radius of the half-circle.
81

82 // Parameters for the creation of the multi-block.
83

84 // d is the width of the block which is exempted from the full domain.
85 plint d = (plint) (2.*std::sqrt(util::sqr(radius)-util::sqr(N/4.)));
86 plint x0 = (N-d)/2 + 1; // Begin of the exempted block.
87 plint x1 = (N+d)/2 - 1; // End of the exempted block.
88

89 // Create a block distribution with the three added blocks.
90 plint envelopeWidth = 1;
91 SparseBlockStructure2D sparseBlock(N+1, N/2+1);
92 sparseBlock.addBlock(Box2D(0, x0, 0, N/2), sparseBlock.

→˓nextIncrementalId());
93 sparseBlock.addBlock(Box2D(x0+1, x1-1, 0, N/4+1), sparseBlock.

→˓nextIncrementalId());
94 sparseBlock.addBlock(Box2D(x1, N, 0, N/2), sparseBlock.

→˓nextIncrementalId());
95

96 // Instantiate the multi-block, based on the created block distribution and
97 // on default parameters.
98 MultiBlockLattice2D<T, DESCRIPTOR> lattice (
99 MultiBlockManagement2D(

100 sparseBlock,
101 defaultMultiBlockPolicy2D().getThreadAttribution(), envelopeWidth ),
102 defaultMultiBlockPolicy2D().getBlockCommunicator(),
103 defaultMultiBlockPolicy2D().getCombinedStatistics(),
104 defaultMultiBlockPolicy2D().getMultiCellAccess<T,DESCRIPTOR>(),
105 new BGKdynamics<T,DESCRIPTOR>(omega)
106 );
107

108 pcout << getMultiBlockInfo(lattice) << std::endl;
109

110 OnLatticeBoundaryCondition2D<T,DESCRIPTOR>*
111 boundaryCondition = createLocalBoundaryCondition2D<T,DESCRIPTOR>();
112

113 halfCircleSetup(lattice, N, radius, *boundaryCondition);
114

115 // Main loop over time iterations.
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116 for (plint iT=0; iT<maxT; ++iT) {
117 if (iT%imageIter==0) {
118 pcout << "Saving Gif at time step " << iT << endl;
119 writeGifs(lattice, iT);
120 }
121 lattice.collideAndStream();
122 }
123

124 delete boundaryCondition;
125 }

Among other information, the program prints the following lines to the screen, as a result of the instruction on line
108:

Size of the multi-block: 401-by-201
Number of atomic-blocks: 3
Smallest atomic-block: 172-by-102
Largest atomic-block: 115-by-201
Number of allocated cells: 0.063573 million
Fraction of allocated cells: 78.8737 percent

This behavior, as well as other parts of the code, are commented in the following:

Line 3 The half-circle shape of the simulation is described by the function class BounceBackNodes. Later in the
program, this object is use to define all cells outside the cell as bounce-back nodes, and inside the channel as
BGK dynamics nodes. The mechanisms involved here are further investigated in Tutorial 2.3 (technically, we
will refer to class BounceBackNodes as a data-processor), while the present tutorial concentrates on sparse
domain implementations.

Line 85-87 In this part, the coordinates of the three blocks which cover the channel are computed.

Line 91 A SparseBlockStructure2D describes the arrangement of atomic-blocks inside a multi-block. Three
blocks are added. Each of them gets an integer ID, which in this case is incremental (number 0, 1, an 2). As
explained in Tutorial 2.4: Generate the sparse-block structure automatically, this ID is used in parallel programs
to associate a block to a MPI process.

Line 98 Instead of the usual default constructor of the MultiBlockLattice2D, a more detailed version is
used which offers the possibility to control various aspects of the multi-block instantiation, and in par-
ticular to specify the arrangement of the internal atomic-blocks. The other arguments of this construc-
tors are not discussed here. As it is shown in the code, one can always refer to the object returned
by defaultMultiBlockPolicy2D() to use a default choice for these parameters. The argument
envelopeWidth=1 hints at the fact that the dynamics executed on this lattice uses a nearest-neighbor com-
munication pattern, and an overlap of one-cell width between atomic-blocks is needed to express the streaming
step inside an atomic-block consistently.

Line 108 The getMultiBlockInfo function provides some insight in the internal structure of a multi-block. You
learn for example that the block added in the middle has dimensions 172-by-102, while the two later blocks
have size 115-by-201. Switching from a regular to a sparse block structure obviously provided a gain of 21% in
memory usage.

3.3 Tutorial 2.3: Understanding data processors

Both atomic-blocks and multi-blocks are most often manipulated with help of constructs known under the name of
“data processor” in Palabos. A data processor specifies an operation to be executed on each cell of a chosen domain
on the block. In case a multi-block is used, the desired domain is intersected with the region occupied by the internal
atomic-blocks, and then executed on the area of intersection of each atomic-block. Data processors are often used
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indirectly, through higher-level user functions. In the code of Tutorial 2.2 for example, bounce-back nodes are defined
by calling the function defineDynamics. This function in its turn instantiates a data processor, responsible for
re-defining the collision step on all the chosen nodes. Other types of data processors are used for example to attribute
initial values to the simulation, define boundary conditions, or post-process data. The user functions offered in Palabos
for all these operations are listed in the appendix of the user guide. It should also be mentioned that data processors
can act simultaneously on several blocks, and in this way create a coupling between two block-lattices, or between a
block-lattice and a scalar-field or tensor-field. This behavior is for example used to compute the velocity in a block-
lattice and store the result in a three-component tensor-field, or to create the coupling between two lattices for the
implementation of multi-component fluids.

In order to obtain a better understanding of how such a data processor works, the call to the function
defineDynamics in the previous tutorial is now replaced successively by two alternative, explicit ways of at-
tributing a BounceBack dynamics to the chosen wall cells. All discussed code constructs can also be found in the file
tutorial_2_3.cpp.

The first approach is easiest to understand, because it is entirely manual. A loop over all space directions is written
manually and, with help of the function class BounceBackNodes from the previous tutorial, it is decided to re-define
the dynamics of chosen nodes through the interface of the multi-block:

/// Manual instantiation of the bounce-back nodes for the boundary.
/** Attention: This is NOT the right way of doing, because it is slow and

* non-parallelizable. Instead, use a data-processor.

*/
void createHalfCircleManually (

MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint N, plint radius )
{

BounceBackNodes<T> domain(N,radius);
for (plint iX=0; iX<=N; ++iX) {

for (plint iY=0; iY<=N/2; ++iY) {
if (domain(iX,iY)) {

defineDynamics(lattice, iX, iY, new BounceBack<T,DESCRIPTOR>);
}

}
}

}

This approach is really self-explaining. It is however crucial to understand that such an approach should never be
chosen in practice, for efficiency considerations. This approach is slow, because for each access to a cell through the
function defineDynamics, the atomic-block on which the cell is located must first be determined. Even worse yet,
this way of accessing a multi-block is not properly parallelized (the result of the operation is correct in parallel, but
the speed of the operation is equal or even inferior to the serial execution speed). As it is shown in the next tutorial,
parallelism is implemented in Palabos by assigning each atomic-block inside a multi-block to a given processor (CPU).
During operations that are executed on an extended domain, such as, the definition of the collision rule to a given part
of the simulation, it is expected that each processor works only with the atomic-block assigned to it. Writing out
explicitly a loop over space directions however means to assign work for the whole domain to all processors. This
can impact the parallel performance of a program significantly, even if it is only part of the setup of a simulation. In
programs which are massively parallelized on hundreds or thousands of processors/cores, a badly parallelized initial
stage can represent a bottleneck for the whole simulation. One of the most important rules in Palabos is therefore to
never write loops over space dimensions in end-user applications. Instead, space loops are only written inside data
processors, as shown below.

Here’s how you can manually write a data processor which creates the half-circle domain, without resorting to the
helper function defineDynamics (the function defineDynamics is of course nothing else than a wrapper which
instantiates a data processor for you):

1 /// This functional defines a data processor for the instantiation
2 /// of bounce-back nodes following the half-circle geometry.
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3 template<typename T, template<typename U> class Descriptor>
4 class HalfCircleInstantiateFunctional
5 : public BoxProcessingFunctional2D_L<T,Descriptor>
6 {
7 public:
8 HalfCircleInstantiateFunctional(plint N_, plint radius_)
9 : N(N_), radius(radius_)

10 { }
11 virtual void process(Box2D domain, BlockLattice2D<T,Descriptor>& lattice) {
12 BounceBackNodes<T> bbDomain(N,radius);
13 Dot2D relativeOffset = lattice.getLocation();
14 for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
15 for (plint iY=domain.y0; iY<=domain.y1; ++iY) {
16 if (bbDomain(iX+relativeOffset.x,iY+relativeOffset.y)) {
17 lattice.attributeDynamics (
18 iX,iY, new BounceBack<T,DESCRIPTOR> );
19 }
20 }
21 }
22 }
23 virtual void getTypeOfModification(std::vector<modif::ModifT>& modified) const {
24 modified[0] = modif::dynamicVariables;
25 }
26 virtual HalfCircleInstantiateFunctional<T,Descriptor>* clone() const
27 {
28 return new HalfCircleInstantiateFunctional<T,Descriptor>(*this);
29 }
30 private:
31 plint N;
32 plint radius;
33 };
34

35 /// Automatic instantiation of the bounce-back nodes for the boundary,
36 /// using a data processor.
37 void createHalfCircleFromDataProcessor (
38 MultiBlockLattice2D<T,DESCRIPTOR>& lattice, plint N, plint radius )
39 {
40 applyProcessingFunctional (
41 new HalfCircleInstantiateFunctional<T,DESCRIPTOR>(N,radius),
42 lattice.getBoundingBox(), lattice );
43 }

Line 4 The class HalfCircleInstantiateFunctional represents the data processor for the instantiation
of the half-circle geometry. It inherits from BoxProcessingFunctional2D_L, where the L stands for
“lattice”, in reference to the fact that the processor acts on a lattice. The two other possibilities are S for scalar-
field, and T for tensor-field. Similarly, a coupling between a block-lattice and a scalar-field is obtained by
inheriting from BoxProcessingFunctional2D_LS.

Line 11 The method process defines the heart of the data processor. It is invoked repeatedly on all atomic blocks,
after intersection of the original domain with the domain of the individual blocks: Palabos computes the sub-
division, and you write the code to be executed on the sub-domains. The parameters delivered to the method
process are an atomic-block and the domain on which the operation is executed, and it is your responsibility
to write a loop over all cells of this domain. It should be pointed out that Palabos could have had a simpler
interface, in which the data processor acts on a single cell, and the space loop is written somewhere in Pala-
bos’ library code. The present choice is however preferrable for efficiency reasons, because it avoids the costs
of a function call on each treated cell. While such a function call is acceptable for computationally intensive
operations (such as, computing the collision step for a cell), in can have an important relative performance

26 Chapter 3. Tutorial 2: Understanding the multi-block structure



Palabos Tutorial, Release 1.0r0

impact on lightweight data processors which execute, say, a simple arithmetic operation. As it is written cur-
rently, the overhead due to the data processor’s interface is practically invisible, and the data is processed with
the same efficiency as manually programmed, raw data constructs. When this raw efficiency is not required
(for example during an initialization step which takes little time), it is possible to use more elegant interfaces
to the data-processor which free you from the burden of writing loops manually. For more information, re-
fer to the constructs OneCellFunctionalXD and OneCellIndexedFunctionalXD in the user guide
(appendix-functions). An example usage of class OneCellIndexedFunctional2D is presented in the
program multiComponent2d/rayleighTaylor.cpp.

Line 13 The domain delivered by parameter to the method process uses coordinates relative to the atomic-block.
They are not compatible with the global coordinate system of the multi-block, and can therefore not be used
directly to decide whether a given cell is part of the fluid channel or not. First, they need to be converted to
global coordinates by accessing the relative position of the atomic-block within the multi-block, through the
command lattice.getLocation(). Again, this coordinate transformation is done manually here for
efficiency reasons; you can also chose to use a slightly less efficient, but more elegant automatic mechanism by
using the construct OneCellIndexedFunctionalXD (see appendix-functions in the user guide).

Line 23-25 Here, you inform Palabos what type of modification your data processor has performed on the block-
lattice. This information is needed internally for Palabos to set up its parallel communication pattern, and to
communicate only data that has been modified. Use the identifier modif::nothing to say that the data
processor performed read-only accesses, modif::staticVariables if it modified the populations (or ex-
ternal scalars), modif::dynamicVariables if it changed the content of the dynamics objects (for example,
when it locally changed the relaxation parameter), modif::allVariables when it made changes of both
kinds, and, finally, modif::dataStructure when it assigned a new dynamics object to the cells (as it did
in the present case).

Line 26-29 The definition of the method clone is paradigmatic in Palabos: it is required for Palabos’ internal mem-
ory management. All classes that are placed in a Palabos inheritance hierarchy have such a method, and the
definition of this method always has the exact same shape. You’ll get used to writing this method without even
thinking about it.

Line 40 Through a function call to applyProcessingFunctional, a data processor is executed exactly once
on a multi-block or an atomic-block. Alternatively, the function integrateProcessingFunctional is
used to add a data processor to a block, and have it executed periodically at each time iteration cycle. The latter
approach is chosen for data processors which are part of the dynamics of the simulation. Examples are non-local
boundary conditions, or couplings between lattices in multi-component fluids.

3.4 Tutorial 2.4: Generate the sparse-block structure automatically

As previously pointed out, you will practically never want to compute the internal structure of a sparse multi-block
manually, and instead use one of Palabos’ automatic domain generators. For example, the Palabos application in the
directory examples/showCases/aneurysm shows how you can automatically read a geometry description from
an STL file, “voxelize” the domain (decide which cells are part of the fluid), and then generate the sparse structure.
By the way, Palabos’ automatic domain generation algorithms go even a step further than what is done in the present
tutorial, as they also instantiate sophisticated algorithms for curved walls, in which the wall location is represented
with second-order accuracy (while in this tutorial the wall is represented through a stair-case shape).

Anyway, let’s get back to tutorial 2.2, and modify the code in such a way that the sparse block structure is generated
automatically by Palabos:

1 ...
2

3 template<typename T>
4 class FluidNodes {
5 public:
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6 FluidNodes(plint N_, plint radius_) : N(N_), radius(radius_)
7 { }
8 bool operator() (plint iX, plint iY) const {
9 return ! BounceBackNodes<T>(N,radius)(iX,iY);

10 }
11 private:
12 plint N, radius;
13 };
14

15 ...
16

17 MultiScalarField2D<int> flagMatrix(N+1, N/2+1);
18 setToFunction(flagMatrix, flagMatrix.getBoundingBox(), FluidNodes<T>(N, radius));
19 plint blockSize = 15;
20 plint envelopeWidth = 1;
21 MultiBlockManagement2D sparseBlockManagement =
22 computeSparseManagement (
23 *plb::reparallelize(flagMatrix, blockSize,blockSize),
24 envelopeWidth );
25

26 // Instantiate the multi-block, based on the created block distribution and
27 // on default parameters.
28 MultiBlockLattice2D<T, DESCRIPTOR> lattice (
29 sparseBlockManagement,
30 defaultMultiBlockPolicy2D().getBlockCommunicator(),
31 defaultMultiBlockPolicy2D().getCombinedStatistics(),
32 defaultMultiBlockPolicy2D().getMultiCellAccess<T,DESCRIPTOR>(),
33 new BGKdynamics<T,DESCRIPTOR>(omega)
34 );

Line 3-13 In order to create the sparse block structure, Palabos needs to know which lattice cells are part of the
fluid. A specific functional is implemented here which returns this information, which is, the negation of
BounceBackNodes.

Line 17 and 18 An integer-valued flag matrix is constructed which is zero valued on the bounce-back domain, and
non-zero on fluid nodes.

Line 19 Let’s cover the domain with blocks of size (approximately) 15x15. The smaller these blocks, and the more
memory efficient a simulation you get. If the blocks are chosen too small, you loose however efficiency, as
the overhead of communicating between blocks is too large. The optimal atomic block size depends on your
hardware and must be determined experimentally.

Line 23 To start with, the multi-block is restructured to be covered by blocks of size 15x15.

Line 22 As a next step, all blocks that have no fluid cell are removed. The result is saved in a data structure of type
MultiBlockManagement

Line 28 The created multi-block management structure is now used to create a block-lattice with the sparse block-
structure.

As it can be seen from the program’s output, this code is more efficient than the one in tutorial 2.2, as it removes 45% of the cells in the original multi-block (against 11% in tutorial 2.2), due to a more efficient coverage by small blocks. The following image shows, in red, the domain for which memory is allocated in this program:
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3.5 Tutorial 2.5: Parallelism in a manually created multi-block

If you use multi-blocks as your basic data type, if you construct them in a standard way, as in all examples of Tutorial
1, and if you compile the program with the MPI_PARALLEL flag, then the program is automatically parallelized.
This means that the multi-block is automatically subdivided into components which are associated to the different
processors.

In the previous tutorials, the multi-block structure was created manually, which means that parallelism must be
handled manually too. Let’s take for example the code from Tutorial 2.2: Creating a multi-block structure manu-
ally, edit the Makefile, set MPI_PARALLEL=true, and recompile. Because the domain is manually created with
three blocks in this example, it can only be parallelized by means of exactly three processes: mpirun -np 3 .
/tutorial_2_2. The algorithm which associates blocks to MPI processes is provided as an argument to the
constructor of the multi-block, in the listing of Tutorial 2.2: Creating a multi-block structure manually above, at
line 101, an argument defaultMultiBlockPolicy2D().getThreadAttribution(), which imposes a
default parallelization strategy: the block with ID 0 go to the MPI thread with ID 0, block #1 goes to MPI thread
#1, and so on. The block-to-thread attribution can however also be directed manually, by creating an object of type
ExplicitThreadAttribution, configuring it, and providing it to the constructor of the multi-block (see file
multiBlock/threadAttribution.h for a definition of the class ExplicitThreadAttribution).

We leave it as an exercice to modify the code of tutorial 2.2 in such a way that it can be executed on exactly two MPI
processes, by assigning two blocks to the first process, and the third block to the second process.

Tutorials from classes and conferences:

• Palabos-Python tutorial at DSFD 2010 (PDF)

User-submitted tutorials:
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CHAPTER

FOUR

GEOPHYSICS: COMPUTE THE PERMEABILITY OF A 3D POROUS
MEDIUM

Main author: Wim Degruyter

This tutorial illustrates, step-by-step, how to compute the permeability of a given porous media. This process consists
of three major steps:

1. Read the geometry, defined by a stack of binary (black and white) images. For this tutorial, we use an artificial
geometry, consisting of two hemispheres which partially overlap. This represents a simple media with just a
single tube through which the fluid flows from the inlet to the outlet. It is however easily replaced by any
complex media, by substituting the bitmap images with user-supplied data. A typical example would be a
porous media, with a structure obtained from experimental data.

2. Simulate a stationary (time-independent), pressure-driven flow through this media, by imposing a constant pres-
sure at the inlet, and a constant, lower pressure at the outlet. All physical quantities (velocity, pressure, and
viscosity) are, for convenience, expressed in a system of lattice units. The final quantity of interest, the perme-
ability, has dimensions of length squared. Therefore, the actual permeability is the lattice permeability times the
spatial resolution squared. If you would like to convert other physical quantities into different units, you should
read the tutorial on unit conversion.

3. Compute the permeability which, according to Darcy’s law, is proportional to the ratio between the flow rate
through the media and the applied pressure gradient. To be able to apply Darcy’s law one has to make sure
the flow is laminar. Therefore it is recommended to run each simulation several times at different pressure
differences. The permeability should stay a constant.

The code developed in this tutorial can be found in the directory palabos/examples/tutorial/
permeability. This Palabos code has been developed as part of a permeability study of vesicular volcanic rocks1.

4.1 Pre-processing

4.1.1 Requirements

We assume you already have downloaded and installed Palabos. Installation support is provided in the user’s guide.
We also recommend to go through the other Palabos tutorials to get acquainted with compiling and running of Palabos
programs.

The input required for permeability are a series of black and white images in .bmp format, with filename
namexxxx.bmp with xxxx numbers starting from 0001. In the directory twoSpheres one can find a series of
bmp images defining two connected hemispheres. To inspect the stack of images one can use e.g. ImageJ. Here are
two example slices, inlet (left) and halfway (right):

1 Degruyter W., Bachmann O., Burgisser A., Malaspinas O. A synchrotron perspective on gas flow through pumices. submitted to Geosphere
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4.1.2 Convert image stack to .dat file

The first step is to create an input file from the images, so the code is able to read in the geometry. This conver-
sion is done by a Matlab script called createDAT.m. Open Matlab and go to the directory of createDAT.
m. At the prompt type createDAT(number-of-files, path/to/inputprefix, path/to/output.
dat) e.g. try for the twoSpheres files and type createDAT(48, 'twoSpheres/', 'twoSpheres',
'twoSpheres.dat'). Every voxel is given a value: 0 for a fluid voxel (blue), 1 for a material voxel that touches
(26-connected) a pore voxel (green), and 2 for an interior material voxel (red) illustrated again by the inlet slice (left)
and the halfway slice (right):
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The Matlab script visualizes the conversion for illustration purposes. If you are converting a large number of files this
process can take some time and it is better to switch of the display by commenting out lines 113-115, 258-260, and
372-374.

Once the .dat file is created we can start a simulation.

4.2 Simulation

4.2.1 Brief outline of the code

The permeability.cpp code is listed below:

1 #include "palabos3D.h"
2 #include "palabos3D.hh"
3

4 #include <vector>
5 #include <cmath>
6 #include <cstdlib>
7

8 using namespace plb;
9

10 typedef double T;
11 #define DESCRIPTOR descriptors::D3Q19Descriptor
12

13 // This function object returns a zero velocity, and a pressure which decreases
14 // linearly in x-direction. It is used to initialize the particle populations.
15 class PressureGradient {
16 public:
17 PressureGradient(T deltaP_, plint nx_) : deltaP(deltaP_), nx(nx_)
18 { }
19 void operator() (plint iX, plint iY, plint iZ, T& density, Array<T,3>& velocity)

→˓const
20 {
21 velocity.resetToZero();
22 density = (T)1 - deltaP*DESCRIPTOR<T>::invCs2 / (T)(nx-1) * (T)iX;
23

24 }
25 private:
26 T deltaP;
27 plint nx;
28 };
29

30 void readGeometry(std::string fNameIn, std::string fNameOut, MultiScalarField3D<int>&
→˓geometry)
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31 {
32 const plint nx = geometry.getNx();
33 const plint ny = geometry.getNy();
34 const plint nz = geometry.getNz();
35

36 Box3D sliceBox(0,0, 0,ny-1, 0,nz-1);
37 std::unique_ptr<MultiScalarField3D<int> > slice = generateMultiScalarField<int>

→˓(geometry, sliceBox);
38 plb_ifstream geometryFile(fNameIn.c_str());
39 for (plint iX=0; iX<nx-1; ++iX) {
40 if (!geometryFile.is_open()) {
41 pcout << "Error: could not open geometry file " << fNameIn << std::endl;
42 exit(EXIT_FAILURE);
43 }
44 geometryFile >> *slice;
45 copy(*slice, slice->getBoundingBox(), geometry, Box3D(iX,iX, 0,ny-1, 0,nz-1));
46 }
47

48 {
49 VtkImageOutput3D<T> vtkOut("porousMedium", 1.0);
50 vtkOut.writeData<float>(*copyConvert<int,T>(geometry, geometry.

→˓getBoundingBox()), "tag", 1.0);
51 }
52

53 {
54 std::unique_ptr<MultiScalarField3D<T> > floatTags = copyConvert<int,T>

→˓(geometry, geometry.getBoundingBox());
55 std::vector<T> isoLevels;
56 isoLevels.push_back(0.5);
57 typedef TriangleSet<T>::Triangle Triangle;
58 std::vector<Triangle> triangles;
59 Box3D domain = floatTags->getBoundingBox().enlarge(-1);
60 domain.x0++;
61 domain.x1--;
62 isoSurfaceMarchingCube(triangles, *floatTags, isoLevels, domain);
63 TriangleSet<T> set(triangles);
64 std::string outDir = fNameOut + "/";
65 set.writeBinarySTL(outDir + "porousMedium.stl");
66 }
67 }
68

69 void porousMediaSetup(MultiBlockLattice3D<T,DESCRIPTOR>& lattice,
70 OnLatticeBoundaryCondition3D<T,DESCRIPTOR>* boundaryCondition,
71 MultiScalarField3D<int>& geometry, T deltaP)
72 {
73 const plint nx = lattice.getNx();
74 const plint ny = lattice.getNy();
75 const plint nz = lattice.getNz();
76

77 pcout << "Definition of inlet/outlet." << std::endl;
78 Box3D inlet (0,0, 1,ny-2, 1,nz-2);
79 boundaryCondition->addPressureBoundary0N(inlet, lattice);
80 setBoundaryDensity(lattice, inlet, (T) 1.);
81

82 Box3D outlet(nx-1,nx-1, 1,ny-2, 1,nz-2);
83 boundaryCondition->addPressureBoundary0P(outlet, lattice);
84 setBoundaryDensity(lattice, outlet, (T) 1. - deltaP*DESCRIPTOR<T>::invCs2);
85
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86 pcout << "Definition of the geometry." << std::endl;
87 // Where "geometry" evaluates to 1, use bounce-back.
88 defineDynamics(lattice, geometry, new BounceBack<T,DESCRIPTOR>(), 1);
89 // Where "geometry" evaluates to 2, use no-dynamics (which does nothing).
90 defineDynamics(lattice, geometry, new NoDynamics<T,DESCRIPTOR>(), 2);
91

92 pcout << "Initilization of rho and u." << std::endl;
93 initializeAtEquilibrium( lattice, lattice.getBoundingBox(),

→˓PressureGradient(deltaP, nx) );
94

95 lattice.initialize();
96 delete boundaryCondition;
97 }
98

99 void writeGifs(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint iter)
100 {
101 const plint nx = lattice.getNx();
102 const plint ny = lattice.getNy();
103 const plint nz = lattice.getNz();
104

105 const plint imSize = 600;
106 ImageWriter<T> imageWriter("leeloo");
107

108 // Write velocity-norm at x=0.
109 imageWriter.writeScaledGif(createFileName("ux_inlet", iter, 6),
110 *computeVelocityNorm(lattice, Box3D(0,0, 0,ny-1, 0,nz-1)),
111 imSize, imSize );
112

113 // Write velocity-norm at x=nx/2.
114 imageWriter.writeScaledGif(createFileName("ux_half", iter, 6),
115 *computeVelocityNorm(lattice, Box3D(nx/2,nx/2, 0,ny-1, 0,nz-1)),
116 imSize, imSize );
117 }
118

119 void writeVTK(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, plint iter)
120 {
121 VtkImageOutput3D<T> vtkOut(createFileName("vtk", iter, 6), 1.);
122 vtkOut.writeData<float>(*computeVelocityNorm(lattice), "velocityNorm", 1.);
123 vtkOut.writeData<3,float>(*computeVelocity(lattice), "velocity", 1.);
124 }
125

126 T computePermeability(MultiBlockLattice3D<T,DESCRIPTOR>& lattice, T nu, T deltaP,
→˓Box3D domain )

127 {
128 pcout << "Computing the permeability." << std::endl;
129

130 // Compute only the x-direction of the velocity (direction of the flow).
131 plint xComponent = 0;
132 plint nx = lattice.getNx();
133

134 T meanU = computeAverage(*computeVelocityComponent(lattice, domain, xComponent));
135

136 pcout << "Average velocity = " << meanU << std::endl;
137 pcout << "Lattice viscosity nu = " << nu << std::endl;
138 pcout << "Grad P = " << deltaP/(T)(nx-1) << std::endl;
139 pcout << "Permeability = " << nu*meanU / (deltaP/(T)(nx-1)) << std::endl;
140

141 return meanU;
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142 }
143

144 int main(int argc, char **argv)
145 {
146 plbInit(&argc, &argv);
147

148 if (argc!=7) {
149 pcout << "Error missing some input parameter\n";
150 pcout << "The structure is :\n";
151 pcout << "1. Input file name.\n";
152 pcout << "2. Output directory name.\n";
153 pcout << "3. number of cells in X direction.\n";
154 pcout << "4. number of cells in Y direction.\n";
155 pcout << "5. number of cells in Z direction.\n";
156 pcout << "6. Delta P .\n";
157 pcout << "Example: " << argv[0] << " twoSpheres.dat tmp/ 48 64 64 0.00005\n";
158 exit (EXIT_FAILURE);
159 }
160 std::string fNameIn = argv[1];
161 std::string fNameOut = argv[2];
162

163 const plint nx = atoi(argv[3]);
164 const plint ny = atoi(argv[4]);
165 const plint nz = atoi(argv[5]);
166 const T deltaP = atof(argv[6]);
167

168 global::directories().setOutputDir(fNameOut+"/");
169

170 const T omega = 1.0;
171 const T nu = ((T)1/omega- (T)0.5)/DESCRIPTOR<T>::invCs2;
172

173 pcout << "Creation of the lattice." << std::endl;
174 MultiBlockLattice3D<T,DESCRIPTOR> lattice(nx,ny,nz, new BGKdynamics<T,DESCRIPTOR>

→˓(omega));
175 // Switch off periodicity.
176 lattice.periodicity().toggleAll(false);
177

178 pcout << "Reading the geometry file." << std::endl;
179 MultiScalarField3D<int> geometry(nx,ny,nz);
180 readGeometry(fNameIn, fNameOut, geometry);
181

182 pcout << "nu = " << nu << std::endl;
183 pcout << "deltaP = " << deltaP << std::endl;
184 pcout << "omega = " << omega << std::endl;
185 pcout << "nx = " << lattice.getNx() << std::endl;
186 pcout << "ny = " << lattice.getNy() << std::endl;
187 pcout << "nz = " << lattice.getNz() << std::endl;
188

189 porousMediaSetup(lattice, createLocalBoundaryCondition3D<T,DESCRIPTOR>(),
→˓geometry, deltaP);

190

191 // The value-tracer is used to stop the simulation once is has converged.
192 // 1st parameter:velocity
193 // 2nd parameter:size
194 // 3rd parameters:threshold
195 // 1st and second parameters ae used for the length of the time average (size/

→˓velocity)
196 util::ValueTracer<T> converge(1.0,1000.0,1.0e-4);
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197

198 pcout << "Simulation begins" << std::endl;
199 plint iT=0;
200

201 const plint maxT = 30000;
202 for (;iT<maxT; ++iT) {
203 if (iT % 20 == 0) {
204 pcout << "Iteration " << iT << std::endl;
205 }
206 if (iT % 500 == 0 && iT>0) {
207 writeGifs(lattice,iT);
208 }
209

210 lattice.collideAndStream();
211 converge.takeValue(getStoredAverageEnergy(lattice),true);
212

213 if (converge.hasConverged()) {
214 break;
215 }
216 }
217

218 pcout << "End of simulation at iteration " << iT << std::endl;
219

220 pcout << "Permeability:" << std::endl << std::endl;
221 computePermeability(lattice, nu, deltaP, lattice.getBoundingBox());
222 pcout << std::endl;
223

224 pcout << "Writing VTK file ..." << std::endl << std::endl;
225 writeVTK(lattice,iT);
226 pcout << "Finished!" << std::endl << std::endl;
227

228 return 0;
229 }

Line 1-11 General definitions and includes are discussed in the other tutorials of Palabos. Here we use the D3Q19
lattice, but other lattices (e.g. D3Q15 or D3Q27) are also possible.

Line 15-28 This functional defines the initial conditions. It is used in function porousMediaSetup: the fluid has
initially zero velocity, with a linear pressure gradient in the x-direction.

Line 30-67 This function reads the porous medium geometry from the input file given as a command-line argument
and creates some output.

Line 69-97 Here, the boundary conditions are set, i.e. all voxels read in as 1 are defined to have bounce back boundary
conditions, and all voxels read in with value two are set to carry no dynamics. The inlet and outlet are defined
to have a fixed pressure difference.

Line 99-142 Various outputs are created. During the simulation .gif files showing the velocity distribution within a
slice are made (line 99-117). A .vti file with the velocity distribution is written, which can be read by Paraview
(line 119-124). The permeability is computed by applying Darcy’s law to the simulated velocity data (line
126-142).

Line 144-229 Main part of the code. The code requires 6 input values from the user: the input.dat file, the output
directory, the size of the file in each orthogonal direction, and finally the pressure difference between the inlet
and the outlet. From these input values, the whole run is instantiated and the simulation starts (line 198). The
ValueTracer (line 196) is used to stop the simulation when steady state is reached. A maximum of number of
iterations is defined (line 201). Every 500 steps a .gif file is written to the output directory (line 207). Once
converged the permeability of the medium is written to the screen and a .vti file is created.
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4.2.2 Running a simulation

First the code needs to be compiled. Check if the Makefile is in order. Open a terminal and type make, once
in the permeability directory. To run a simulation type ./permeability path/to/input.dat path/to/
outputdir/ nx ny nz deltaP in a terminal in the permeability directory. Let’s test it on our example by
typing ./permeability twoSpheres.dat tmp/ 48 64 64 0.00005. The progress of the simulation is
written to the screen. One can find the .gif and .vti files in the tmp subdirectory.

4.3 Post-processing

Use our favorite image program to visualize the .gif files. Here we see the velocity distribution at the inlet (left) and
halfway (right) after 4500 iterations:

Paraview allows you to visualize the .vti file in 3D. Here are some examples:
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