Grid-refinement in Palabos

Palabos summer school - O. Malaspinas
June 9, 2021

Don't hesitate to interrupt!

General introduction

= Palabos is a collaborative projet (v2.3 currently) %
> <4
https://www.palabos.org.

= Merge requests are encouraged (19 contributors).
= Different means to communicate with us:
= Palabos forum https://palabos-forum.unige.ch/
= Discord server https://discord.com/invite/UEa9sEQ
= Gitlab repository https://gitlab.com/unigespc/palabos
= Twitter https://twitter.com/Palabosl
= Ressources:
= Palabos online seminar series
https://palabos.unige.ch/community/palabos-online-seminar-series/
= YouTube channel:
https://www.youtube.com/channel /UCO3qoJm3U8cu9D_IrqEHctQ
= Live streams (follow me for announces:
https://twitter.com/omalaspinas)

https://www.palabos.org
https://palabos-forum.unige.ch/
https://discord.com/invite/UEa9sEQ
https://gitlab.com/unigespc/palabos
https://twitter.com/Palabos1
https://palabos.unige.ch/community/palabos-online-seminar-series/
https://www.youtube.com/channel/UCO3qoJm3U8cu9D_lrqEHctQ
https://twitter.com/omalaspinas

Planned additions
Q.

Drafts (in the coming weeks)
= Jonathan's WENO scheme.
= Francesco's and Irina’s new boundary conditions.
= Christophe’s general force models.

WIP (in the coming months)
= Jonas' GPU implementation.
= Orestis’ adjoint method.

Somewhere in the cloud (in the coming century)
= Sébastien Leclair's color-gradient model.
= Adaptive grid refinement.
= Multi-phase grid refinement.

Grid-refinement generalities (1/2)
The need for variable resolution

Laminar flow: low resolution

Turbulent flow: high resolution

Figure 1: Source: Wikipedia, https://bit.ly/38I3Kor

https://bit.ly/38l3Kor

Basics of grid refinement

= Geometrical considerations!

Multi—grid Multi—-domain

A

| -

-~ Level 2

Level 0

BEE

FER
HFEEH]
HEE
HE

2

= |n Palabos: multi-domain

ip. Sagaut, et. al, Multiscale And Multiresolution Approaches in Turbulence, Imperial
College Press, June 2006.

2p. Lagrava et al., Advances in multi-domain lattice Boltzmann grid refinement, J.
Comp. Phys., 231, p. 4808-4822, (2012)

Basics of grid refinement (1/2)

= The discretization LBM performed over a regular grid %
> 4

= [ntroduction of non—uniform structure

= Discontinuity of the physical quantities
= Quantities must be rescaled (use of LB units)

= Transitions are only powers of two

Coarse grid Fine grid Forbidden
0%, dx g
Ot. ot f

Basics of grid refinement (2/2)
v «

= Coarse grid: pc, U, éc,

= Fine grid: pr, Uy, éf,

Coarse grid Fine grid
0. oy
st. sty

Py Ue, é oy tr, éj

c

Soelt +L,E+8) = fiolt, @) — = (f, o(t,) — ff.?)(t.;f)) Fslt+ 1,3 +8) = fis(6,3) - & (f,,/(:..f) = fffy(f‘f))

= Related via physical units: p, 4, é

5x2 5x?
Pressure: = —<Xp.=—Lps,
P 5t§ Pc 6t? pr
OXc OXr
Velocity: i=—i.=—1u
e LT ey
1 1

Strain: S E:C = th:f'

Questions on basics

Questions?

Rescaling of macroscopic quantities® (1/2)

Density, pressure, and velocity
= We consider the convective scaling §t ~ dx.
= Meaning dxc = 0x¢/2 then dt. = dtr /2.
= There are more time-steps on the fine lattice.
= p, 4, and p are continuous at the interface.

= Pressure and Density (p = c2p):

5Xf2 46)<C2 5XC2
pr = SPf= %5
2 4012 512

pr = Pc < Pf = Pc-

Pec;

= Velocity:

OXr _, 20xc _, OXe _,
— U = —— i = — U,
Str T 20t T ot €

— —

us = Uc.

3A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann
grid refinement algorithm, Physical Review E, 67 (2003), p. 066707.

Rescaling of macroscopic quantities (2/2)

Rate of strain tensor

= We consider the convective scaling 0t ~ dx.
= Meaning dxc = 0x¢/2 then dt. = dtr /2.

= p, U, and p are continuous at the interface (dr = U, ...).
= Strain:
1 2 1
§te=f Ot =f bt~
1
S. ==5

=f 2:5'

Rescaling of populations (1/2)
LY

Three different parts: f;, fi(o), and "4

= Populations are represented as f; = f,-(o) + £

© _ G-d 1 o opn. oo
£ =wp (1 + ,cs2 i E(Ci(:i —cil): uu)) :
= We know p. = pf, Uc = Us.
= Equilibrium pop:
(0 _ £(0)
f;‘,c - f;‘,f .
= Non-equilibrium pop:
» £2°9 = £ — £ is not continuous.

neq __ neq
= fe =afig.

Rescaling of populations (2/2)
Let us start with the BE *%4

BE equation with BGK approximation (f(X, C, t))

(8: + 2 Vz)f = —%(f —)

Velocity discretization
Finite velocity BE equation (f(X, ¢;, t)

fi(X, 1)
= 1
(9 + G- V)i = =~ (fi = %)

W ite it
e rewrite i a1

=0 fi—f-(o)
dt T(i)

A priori determination of o (1/2)
Space-time discretization %
. . . > 4

After numerical integration along characteristics

ot +
fi+7fi: <f+ f) Jrﬁ_ifi(o))’
o7
+" : function evaluated at position X + ¢;0t and time t + dt. With the
change of variable

we obtain

A priori determination of « (2/2)

Non-equilibrium distribution %
Subtracting fi(o) from f; = f + % (fi _ f(O)) N .

1

= 27 + 0t 27 -
ﬁneq — f.neq¢> fneq — f-.neq7
(2

Continuity of £

Ensure continuity of “bare” quantities on coarse and fine grid

2T F-'neq _ 27— ?-'neq
21 4 6t) € 27 4 6t) 0F

6tc f-neq C 5tf fneq f
TC Tf
§tf Tc

5tc TF

Rescaling in Palabos (1/4)

From coarse to fine

= Decompose: from f; ., compute p., U, f;

neq
ic -

Pec = Z fe U= Z f,-,CE’,-/rhoc, fiflceq =fio— f’(g)

= Rescale:
— 7 neq neq
Pf = Pc, Uf = Uc, f;’_’f = f;',c /0[.

= Recompose: from ps, Uy, f;c" compute f; ¢.

fir = (0o,) + £7

Rescaling in Palabos (2/4)
v 4
a.

From coarse to fine
- 1
= Decompose: from f; ¢, compute pr, ir, f’,yfq_
— = - neq __ (0)
pr=Y fir, Gr=Y fi&/rhor, £FI="r—F.
i i

= Rescale:
= = = neq neq
pe = pf, Uc=1df, f ' =af"

= Recompose: from pc, e, f; o compute f; ..

fic = f'(O)(pa ic) + f;nceq

) 1

Rescaling in Palabos (3/4)

v «

Some code %
class Rescaler { 4

// Rescales rel. freq. (potentially many of them)
virtual Array<T,Descriptor<T>::q> computeRescaledRelFreq(
Array<T,Descriptor<T>::q> &relFreq, T xDt) 5
// Recale the decomposed quantities
virtual void rescale(Dynamics<T,Descriptor> &dyn,
T xDt, std::vector<T> &rawData) = 0;

// Decomposes a cell into rho, u, fneq, and rescales it
virtual void decomposeAndRescale(
Cell<T,Descriptor> & cell, T xDt, plint order,
std: :vector<T> &decompAndRescaled) 3
// Other things (constructor, ...)

Rescaling in Palabos (4/4)

For BGK (simplified) .
class Rescaler { %
// zDt -> 2 other 1/2 >
virtual void rescale(Dynamics<T,D> &dyn,
T xDt, std::vector<T> &rawData) {

// rawData[0] = Tho, rawData[1-3] = u,

// rawDatal[4-q] = fneq

Array<T, D<T>::q> resRelFreq =
this->computeRescaledRelFreq(relFreq, xDt);

for (plint iPop = 0;

iPop < SymmetricTensorImpl<T,D<T>::d>::n; ++iPop) {

plint iA = 1+D<T>::d+iPop;
T prefactor = relFreq[iA] / resRelFreq[iA] * xDt;
rawData[iA] *= prefactor;

}

Questions on rescaling

Questions?

Overlapping zone

v «

Coupling between refinement zones
= Two way coupling to complete missing information.
Overlapping
zone

Coarse grid | |

e o 0 0 0 O +@e »@(unkmmnum

unknown value- >>(¢+><¢+><f X X X eeeee
: Fine grid

= Need for a buffering zone: “overlap”.

= |n Palabos the thickness is one coarse node.

Overlapping in Palabos (1/3)

Overlap and interface Complex overlap

Fluid |blocks L | [
Interface Rl NN N
Overlap block 71 TERT

= Communication in overlaps T =

= Implemention: NTensorFields L

= Containing rawData Overlap blocks

= Efficiency vs “ease” of impl.] | [

Overlapping in Palabos (2/3)
L

Overlap and interface MultiLevel3D
Each grid level contains

Fluid |blocks
// Lattice at that level

Interface MultiBlockLattice3D<T, D> *lattice;

Overlap block // Buffer zones

MultiNTensorField3D<T> *decomp_tO,
*decomp_t12,

= Complex data struct.

= Sparse data struct. *decomp_t1,

= Complex interface geom. *decomp_fine;

Coupling involves different operations on the interface.

Overlapping in Palabos (3/3)

MultiLevel3D
= DecomposeAndRescaleFunctional3D
L 4

Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);

egine.decomposeAndRescale(cell, xDt, order,
decompAndRescaled) ;

for (iA = 0; iA < decompAndRescaled.size(); ++iA) {
tensor.get (0X,0Y,0Z) [iA] = decompAndRescaled[iA];

}

= RecomposeFunctional3D

Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);
for (iA = 0; iA < nDim; ++iA) {
decomposed[iA] =
tensor.get (oX,oY,0Z) [1A];
+
cell.getDynamics() .
recompose(cell, decomposed, order);

Two-dimensional interface
Copy from coarse to fine, Tc—s f ‘-@ vy

O

Coarse grid Fine grid

O O O O
P x® xR x Qe
X X X X X X X
X X X X X X X
X X X X X X X
X X X X X X X

o O O

Copy from fine to coarse, Tf—c

Coarse to fine coupling

.. . . A al
Missing information
= One must “increase” the information.
Copy from coarse to fine, Tc— s » 4

Coarse grid

X X X X X X X

(@ x @ x @ x B«

X X X X X X X

Fine grid

Copy from fine to coarse, ¢

= Copy on superposed nodes.
= Interpolate missing info.
= Temporal and spatial interpolations.

Coarse to fine coupling: temporal interpolation

Need time interpolation for t = t 4+ 0t/2. %
O B/ XD x »> <4

X)X x5 X

Time: ¢t o /55

[xixix
O [/ x@x

XXX
XXX

Time: t + 6t/2 b

XXX

O /X x

X)X XX

Time: t + 0t o [o)ve <

o fxixix
O B/ x@ x

Linear time interpolation (second order)

fi(X,t+0t) + (X, t
fi(X,t+0t/2) = e+ 2)+ (x).

Coarse to fine coupling: spatial interpolation

v «

What interpolation ?

= Linear interpolation (second order)

= Cubic interpolation (fourth order)

Linear interpolation

g(x —h) g(z) glz+h)

X o) X
Cubic interpolation
g(x — 3h) g(z—h) g(x) gz +h) g(x + 3h)
X X (@) X X

= Which one to chose?

Cubic interpolation.

Importance of the spatial interpolation (1/2)
}%4

= Compare linear spatial interpolation and cubic spatial interpolation

Second order interpolation is not enough
= Numerical proof using a simple 2D Poiseuille flow

= Setup of the simulation
Coarse Grid Fine Grid

4N

ce of the spatial interpolation (2/2)

Results
= A linear pressure gradient is expected.
= The pressure gradient of the simulation (both interpolations)

x10™ Pressure evolution in the refined Poiseuille flow

cubic interpolation
— — — linear interpolation

5

pressure

resolution

= There is a loss of mass on the interface (when 7 — 1/2, or high Re)!
= No more second order accuracy

Questions on interpolations

Questions?

Coarse to fine coupling in Palabos
Processing functionals ,%4

= Couplings is done through Processing Functionals.
= Ordering through negative levels (executed explicitly).

Spatial processing functionals
= From coarse MultiNTensorField3D to fine MultiNTensorField3D

CopyAndSpatialInterpolationPlaneFunctional3D
CopyAndSpatialInterpolationEdgeFunctional3D
CopyAndSpatialInterpolationCornerFunctional3D

Temporal functionals
= From fine MultiNTensorField3D to fine MultiNTensorField3D

TemporallnterpolationFunctional3D

Fine to coarse coupling

Filtering \» v
The fine grid has “too much” information
Copy from coarse to fine, To-sy > 4

Coarse grid (g x|®| x

X x| x|x

® x|®|x

x Ix]x[x

® % |®|x%

x x| x|x

®: X|®|X Fine grid

+

Copy from fine to coarse, T f_s.

Averaging over all lattice directions

Q
|
-

n

@

f;‘flfeq()?tgﬁm t) - q()?fcﬁc + ¢, t)

Q-
[
o
B

Fine to coarse coupling in Palabos

Filtering functional *. !
for (plint iA = 0; iA < minIndex; ++iA) { %
// Tho and u may not be filtered (only copied) ~
cTensor.get(iX,1Y,iZ) [iA] = fTensor.get (fX,fY,fZ) [iA];
}
for (plint iA = minIndex; // only fneq is
iA < nDim-D<T>::ExternalField::numScalars; ++iA) {
cTensor.get (iX,1iY,iZ) [iA] = fTensor.get (fX,fY,fZ) [iA];
for (plint iPop = 1; iPop < q; ++iPop) {
plint nextX = fX+c[iPop] [0];
plint nextY = fY+c[iPop] [1];
plint nextZ = fZ+c[iPop] [2];
cTensor.get (iX,iY,iZ) [1A] +=
fTensor.get (nextX,nextY,nextZ) [iA];

}
cTensor.get (iX,iY,iZ) [iA] /= (T)q;

Algorithm

v «
}%4

One time step: t — t + 0t

= CSt—t+dt « CSt—t+ % = Time interpolation.

= . = Space interpolation.

= 0 = Complete fine.

. = CSt+ % — t+ Ot = Space interpolation.

= . = Complete fine.

. . = Filter.
= Complete coarse.

The algorithm in Palabos

Recursive algorithm *.
void collideAndStream(plint il) { %
lattice[iL].collideAndStream(); // collision coarse <4

if (il < (plint) (gridLevels.size()-1)) {
// coarse to fine coupling
lattice[iL] .decomposeAndRescale(); // t+1, resc f_i in fine NTensor
lattice[il].timeInterp(); // interp at time t + 1/2
collideAndStream(ilL+1); // collision fine t->t+1/2
lattice[il].spatialInterp(); // at time t+1/2
lattice[iL+1] .recompose() // fine lattice recomposed at t+1/2
lattice[iL+1] .executeProcessors(); // BC, stats,
collideAndStream(il+1); // collision fine t+1/2->t+1
lattice[il] .spatialIlnterp(); // at time t+1
lattice[iL+1] .recompose() // fine is OK
lattice[iL+1] .executeProcessors(); // BC, stats,
// fine to coarse coupling
lattice[iL+1] .decomposeAndRescale(); // t+1, resc f_i in coarse NTensor
lattice[iL].filter();
lattice[il] .recompose(); // coarse is OK

Questions on the algorithm

Questions?

Data analysis in Palabos
»%4

MuiltiLevelScalar/Tensor fields
= Must have the same grid structure than MultiLevel3D.
= The interface is similar to MultiBlock3D.

Processing functionals
= Integrate/Apply must specify grid level.
= Reductive must specify grid level and provide “container” for the

result:
= More data is generated for fine level than coarse (twice more).

Grid generation (1/2)
LY

Spoiler
= Grid generation is a very complex topic.

Grid density
= Simplification: offload to external tool.
= Grid density: Scalar field € [0, 1].
= Generated manually or by analyzing “coarse” simulations:
= Typically more points where the are “large” gradients.

Grid generation (2/2)

Octree grid
= Start with cuboid.
= |If grid density > threshold divide.
= Continue as long as the max number levels has not been reached.
= Balance the load on multiple processors.
= There are strong constraints:
= Only factor of two at each interface.
= Overlap blocks must be on the same processor as finer blocks.
= Remove useless blocks (inside geometry).

Questions?

Live stream
}%4

Sorry | lied
Two live demos:

= Naive and non-naive grid generation for the cavity.
= Implemention of the grid-refined-3d-cavity.

Exercises

v «

= Three different exercises
1. Familiarization with grid density.
2. Generate alternative grid densities.
3. Add functionalities for external flow simulations.
= Inspire yourself from existing code to add novel functionalities:
= Read the code and understand it.
= Develop new functionalities.

= ook for Exercise comments to find where to add functionalities.

Exercises: Grid density (1/2)

Boxes
= Add/remove boxes to see how grid densities are built.
= Visualize grid density fields.

= Modify the simpleSphere_exercise.xml to add boxes.

Exercises: Grid density (2/2)
Spheres ;% 4

= |nspired by the Boxes code create spherical grid densities.
= Look for Exercise comments to find the relevant places to add code.

= Modify the generateGridDensityFromSpheres_exercise.cpp to
add spherical shapes grid density.

Exercises: flow past a sphere (1/2)
Reynolds stress definition %
= Reynolds decomposition , <

/

+ ',

<l

L_i:

T and @ mean and fluctuating part.
= Reynolds stress tensor

T—07.

<l

Add Reynolds stress

= Compute i by averaging U over time.
= Once 0 has converged:
« Compute i’ = i — ii.

—/ =/

= Compute d'd’.

=/ =/

= Average U’ over time to get T.

= Need integrateProcessingFunctional.

Exercises: flow past a sphere (2/2)
L

Add probes
= Want to measure values on special places.
= Use existing probes of Palabos: reductions.
= Input: position. Output: velocity, pressure, vorticity, . ..

= Difficulty, one must decide on which level to apply the probes and
store them.

The real end

Questions?

