

Grid-refinement in Palabos

Palabos summer school - O. Malaspinas June 9, 2021

Don't hesitate to interrupt!

General introduction

- Palabos is a collaborative projet (v2.3 currently) https://www.palabos.org.
- Merge requests are **encouraged** (19 contributors).
- Different means to communicate with us:
 - Palabos forum https://palabos-forum.unige.ch/
 - Discord server https://discord.com/invite/UEa9sEQ
 - Gitlab repository https://gitlab.com/unigespc/palabos
 - Twitter https://twitter.com/Palabos1
- Ressources:
 - Palabos online seminar series https://palabos.unige.ch/community/palabos-online-seminar-series/
 - YouTube channel:

https://www.youtube.com/channel/UCO3qoJm3U8cu9D_IrqEHctQ

 Live streams (follow me for announces: https://twitter.com/omalaspinas)

Drafts (in the coming weeks)

- Jonathan's WENO scheme.
- Francesco's and Irina's new boundary conditions.
- Christophe's general force models.

WIP (in the coming months)

- Jonas' GPU implementation.
- Orestis' adjoint method.

Somewhere in the cloud (in the coming century)

- Sébastien Leclair's color-gradient model.
- Adaptive grid refinement.
- Multi-phase grid refinement.

Grid-refinement generalities (1/2)

The need for variable resolution

Figure 1: Source: Wikipedia, https://bit.ly/38l3Kor

Grid-refinement generalities (2/2)

Basics of grid refinement

Geometrical considerations¹

Multi-grid

$\begin{array}{c} & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

In Palabos: multi-domain²

¹P. Sagaut, et. al, Multiscale And Multiresolution Approaches in Turbulence, Imperial College Press, June 2006.

Multi-domain

²D. Lagrava et al., Advances in multi-domain lattice Boltzmann grid refinement, J. Comp. Phys., 231, p. 4808-4822, (2012)

Basics of grid refinement (1/2)

- The discretization LBM performed over a regular grid
- Introduction of non-uniform structure
 - Discontinuity of the physical quantities
 - Quantities must be rescaled (use of LB units)
- Transitions are only powers of two

Basics of grid refinement (2/2)

- Coarse grid: p_c , \vec{u}_c , $\underline{\underline{S}}_c$, ...
- Fine grid: p_f , \vec{u}_f , $\underline{\underline{S}}_f$, ...

• Related via physical units: $p, \vec{u}, \underline{S}, \ldots$

Pressure: Velocity: $p = \frac{\delta x_c^2}{\delta t_c^2} p_c = \frac{\delta x_f^2}{\delta t_f^2} p_f,$ $\vec{u} = \frac{\delta x_c}{\delta t_c} \vec{u}_c = \frac{\delta x_f}{\delta t_f} \vec{u}_f,$ $\underline{\underline{S}} = \frac{1}{\delta t_c} \underline{\underline{S}}_{c} = \frac{1}{\delta t_c} \underline{\underline{S}}_{f}.$

Strain:

Questions?

Rescaling of macroscopic quantities³ (1/2)

Density, pressure, and velocity

- We consider the convective scaling $\delta t \sim \delta x$.
 - Meaning $\delta x_c = \delta x_f/2$ then $\delta t_c = \delta t_f/2$.
 - There are more time-steps on the fine lattice.
 - p, \vec{u} , and ρ are continuous at the interface.
- Pressure and Density $(p = c_s^2 \rho)$:

$$\begin{split} \frac{\delta x_f^2}{\delta t_f^2} p_f &= \frac{4\delta x_c^2}{4\delta t_c^2} p_f = \frac{\delta x_c^2}{\delta t_c^2} p_c, \\ p_f &= p_c \Leftrightarrow \rho_f = \rho_c. \end{split}$$

Velocity:

$$\frac{\delta x_f}{\delta t_f} \vec{u}_f = \frac{2\delta x_c}{2\delta t_c} \vec{u}_f = \frac{\delta x_c}{\delta t_c} \vec{u}_c,$$
$$\vec{u}_f = \vec{u}_c.$$

³A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann grid refinement algorithm, Physical Review E, 67 (2003), p. 066707.

Rescaling of macroscopic quantities (2/2)

Rate of strain tensor

- We consider the convective scaling $\delta t \sim \delta x$.
 - Meaning $\delta x_c = \delta x_f/2$ then $\delta t_c = \delta t_f/2$.
 - p, \vec{u} , and ρ are continuous at the interface ($\vec{u}_f = \vec{u}_c, \ldots$).

Strain:

$$\frac{1}{\delta t_f} \underline{\underline{S}}_f = \frac{2}{\delta t_c} \underline{\underline{S}}_f = \frac{1}{\delta t_c} \underline{\underline{S}}_c,$$
$$\underline{\underline{S}}_f = \frac{1}{2} \underline{\underline{S}}_c.$$

Rescaling of populations (1/2)

• Populations are represented as $f_i = f_i^{(0)} + f_i^{neq}$

$$f_i^{(0)} = w_i \rho \left(1 + \frac{\vec{c}_i \cdot \vec{u}}{c_s^2} + \frac{1}{2c_s^4} (\vec{c}_i \vec{c}_i - c_s^2 \underline{l}) : \vec{u} \vec{u}) \right).$$

• We know
$$\rho_c = \rho_f$$
, $\vec{u}_c = \vec{u}_f$.

Equilibrium pop:

$$f_{i,c}^{(0)} = f_{i,f}^{(0)}.$$

- Non-equilibrium pop:
 - $f_i^{\text{neq}} = f_i f_i^{(0)}$ is not continuous.
 - $f_{i,c}^{\operatorname{neq}} = \alpha f_{i,f}^{\operatorname{neq}}$.

Let us start with the BE

BE equation with BGK approximation $(f(\vec{x}, \vec{c}, t))$

$$(\partial_t + ec c \cdot ec
abla_{ec x})f = -rac{1}{ au}(f-f^{(0)})$$

Velocity discretization

Finite velocity BE equation $(f(\vec{x}, \vec{c}_i, t) \equiv f_i(\vec{x}, t))$

$$(\partial_t + ec c_i \cdot ec
abla_{ec x}) f_i = -rac{1}{ au} (f_i - f_i^{(0)})$$

We rewrite it

$$\frac{\mathrm{d}f_i}{\mathrm{d}t} = -\frac{1}{\tau}(f_i - f_i^{(0)})$$

Space-time discretization

After numerical integration along characteristics

$$f_i^+ - f_i = -rac{\delta t}{2 au} \left(f_i^+ - f_i^{(0)^+} + f_i - f_i^{(0)}
ight),$$

"+" : function evaluated at position $\vec{x} + \vec{c}_i \delta t$ and time $t + \delta t$. With the change of variable

$$\bar{f}_i = f_i + \frac{\delta t}{2\tau} \left(f_i - f_i^{(0)} \right),$$
$$\bar{\tau} = \frac{2\tau + \delta t}{2\delta t},$$

we obtain

$$\bar{f}_i^+ = \bar{f}_i - \frac{1}{\bar{\tau}} \left(\bar{f}_i - f_i^{(0)} \right).$$

A priori determination of α (2/2)

Non-equilibrium distribution

Subtracting
$$f_i^{(0)}$$
 from $\overline{f}_i = f_i + \frac{\delta t}{2\tau} \left(f_i - f_i^{(0)} \right)$

$$ar{f}_i^{\mathrm{neq}} = \left(rac{2 au + \delta t}{2 au}
ight) f_i^{\mathrm{neq}} \Leftrightarrow f_i^{\mathrm{neq}} = \left(rac{2 au}{2 au + \delta t}
ight) ar{f}_i^{\mathrm{neq}},$$

Continuity of f_i^{neq}

Ensure continuity of "bare" quantities on coarse and fine grid

$$\begin{pmatrix} 2\tau \\ 2\tau + \delta t_c \end{pmatrix} \bar{f}_{i,c}^{\text{neq}} = \left(\frac{2\tau}{2\tau + \delta t_f}\right) \bar{f}_{i,f}^{\text{neq}}, \\ \frac{\delta t_c}{\bar{\tau}_c} \bar{f}_i^{\text{neq},c} = \frac{\delta t_f}{\bar{\tau}_f} \bar{f}_i^{\text{neq},f}, \\ \alpha = \frac{\delta t_f}{\delta t_c} \frac{\bar{\tau}_c}{\bar{\tau}_f}$$

From coarse to fine

• Decompose: from $f_{i,c}$, compute ρ_c , \vec{u}_c , $f_{i,c}^{neq}$.

$$\rho_c = \sum_i f_{i,c}, \quad \vec{u}_c = \sum_i f_{i,c} \vec{c}_i / rho_c, \quad f_{i,c}^{neq} = f_{i,c} - f_{i,c}^{(0)}.$$

Rescale:

$$\rho_f = \rho_c, \quad \vec{u}_f = \vec{u}_c, \quad f_{i,f}^{\text{neq}} = f_{i,c}^{\text{neq}} / \alpha.$$

• Recompose: from ρ_f , \vec{u}_f , $f_{i,f}^{\text{neq}}$ compute $f_{i,f}$.

$$f_{i,f} = f_i^{(0)}(\rho_f, \vec{u}_f) + f_{i,f}^{neq}.$$

From coarse to fine

• Decompose: from $f_{i,f}$, compute ρ_f , \vec{u}_f , $f_{i,f}^{neq}$.

$$\rho_f = \sum_i f_{i,f}, \quad \vec{u}_f = \sum_i f_{i,f} \vec{c}_i / rho_f, \quad f_{i,f}^{neq} = f_{i,f} - f_{i,f}^{(0)}.$$

Rescale:

$$\rho_c = \rho_f, \quad \vec{u}_c = \vec{u}_f, \quad f_{i,c}^{\text{neq}} = \alpha f_{i,f}^{\text{neq}}.$$

• Recompose: from ρ_c , \vec{u}_c , $f_{i,c}^{neq}$ compute $f_{i,c}$.

$$f_{i,c} = f_i^{(0)}(\rho_c, \vec{u}_c) + f_{i,c}^{neq}.$$

Some code
class Rescaler {
 // Rescales rel. freq. (potentially many of them)
 virtual Array<T,Descriptor<T>::q> computeRescaledRelFreq(
 const Array<T,Descriptor<T>::q> &relFreq, T xDt) const;
 // Recale the decomposed quantities
 virtual void rescale(const Dynamics<T,Descriptor> &dyn,
 T xDt, std::vector<T> &rawData) const = 0;
 // Decomposes a call into the many of mescales it

// Decomposes a cell into rho, u, fneq, and rescales it
virtual void decomposeAndRescale(
 Cell<T,Descriptor> const& cell, T xDt, plint order,
 std::vector<T> &decompAndRescaled) const;
// Other things (constructor, ...)

-

```
For BGK (simplified)
class Rescaler {
 // xDt \rightarrow 2 other 1/2
 virtual void rescale(const Dynamics<T,D> &dyn,
    T xDt, std::vector<T> &rawData ) const {
      // rawData[0] = rho, rawData[1-3] = u,
      // rawData[4-q] = fneq
      Array<T, D<T>::q> resRelFreq =
        this->computeRescaledRelFreq(relFreq, xDt);
      for (plint iPop = 0;
           iPop < SymmetricTensorImpl<T,D<T>::d>::n; ++iPop) {
        plint iA = 1+D<T>::d+iPop;
        T prefactor = relFreq[iA] / resRelFreq[iA] * xDt;
        rawData[iA] *= prefactor;
      }
```


Questions?

Coupling between refinement zones

Two way coupling to complete missing information.

- Need for a buffering zone: "overlap".
- In Palabos the thickness is one coarse node.

Overlap and interface

- Communication in overlaps
- Implemention: NTensorFields
- Containing rawData
- Efficiency vs "ease" of impl.

Complex overlap

Overlap and interface

- Complex data struct.
- Sparse data struct.
- Complex interface geom.

```
*decomp_fine;
```

Coupling involves different operations on the interface.

MultiLevel3D

DecomposeAndRescaleFunctional3D

```
Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);
egine.decomposeAndRescale( cell, xDt, order,
    decompAndRescaled);
for (iA = 0; iA < decompAndRescaled.size(); ++iA) {
    tensor.get(oX,oY,oZ)[iA] = decompAndRescaled[iA];
}
```

RecomposeFunctional3D

```
Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);
for (iA = 0; iA < nDim; ++iA) {
  decomposed[iA] =
    tensor.get(oX,oY,oZ)[iA];
}
cell.getDynamics().
  recompose(cell, decomposed, order );
```


Two-dimensional interface

Coarse to fine coupling

Missing information

Copy from fine to coarse, $x_{f \rightarrow c}$

- Copy on superposed nodes.
- Interpolate missing info.
- Temporal and spatial interpolations.

Coarse to fine coupling: temporal interpolation

Need time interpolation for $t = t + \delta t/2$.

Time: tTime: $t + \delta t/2$ Time: $t + \delta t$

Linear time interpolation (second order)

$$f_i(\vec{x},t+\delta t/2) = \frac{f_i(\vec{x},t+\delta t) + f_i(\vec{x},t)}{2}$$

Coarse to fine coupling: spatial interpolation

What interpolation ?

- Linear interpolation (second order)
- Cubic interpolation (fourth order)
 Linear interpolation

$$\begin{array}{ccc} g(x-h) & g(x) & g(x+h) \\ \times & \bigcirc & \times \end{array}$$

Cubic interpolationg(x-3h)g(x-h)g(x)g(x+3h) \mathbf{X} \mathbf{X} \mathbf{O} \mathbf{X}

• Which one to chose?

Cubic interpolation.

Importance of the spatial interpolation (1/2)

Second order interpolation is not enough

- Numerical proof using a simple 2D Poiseuille flow
- Compare linear spatial interpolation and cubic spatial interpolation
- Setup of the simulation Coarse Grid

Importance of the spatial interpolation (2/2)

Results

- A linear pressure gradient is expected.
- The pressure gradient of the simulation (both interpolations)

- There is a loss of mass on the interface (when au
 ightarrow 1/2, or high Re)!
- No more second order accuracy

Questions?

Processing functionals

- Couplings is done through Processing Functionals.
- Ordering through negative levels (executed explicitly).

Spatial processing functionals

From coarse MultiNTensorField3D to fine MultiNTensorField3D

CopyAndSpatialInterpolationPlaneFunctional3D CopyAndSpatialInterpolationEdgeFunctional3D CopyAndSpatialInterpolationCornerFunctional3D

Temporal functionals

From fine MultiNTensorField3D to fine MultiNTensorField3D

TemporalInterpolationFunctional3D

Fine to coarse coupling

Filtering

The fine grid has "too much" information

Averaging over all lattice directions

$$f_{i,f}^{\text{neq}}(\vec{x}_{f\to c}^{c},t) = \frac{1}{q} \sum_{i=0}^{q-1} f_{i,f}^{\text{neq}}(\vec{x}_{f\to c}^{c} + \vec{c}_{i},t)$$

Fine to coarse coupling in Palabos

```
Filtering functional
for (plint iA = 0; iA < minIndex; ++iA) {</pre>
  // rho and u may not be filtered (only copied)
  cTensor.get(iX,iY,iZ)[iA] = fTensor.get(fX,fY,fZ)[iA];
}
for (plint iA = minIndex; // only fneg is
     iA < nDim-D<T>::ExternalField::numScalars; ++iA) {
  cTensor.get(iX,iY,iZ)[iA] = fTensor.get(fX,fY,fZ)[iA];
  for (plint iPop = 1; iPop < q; ++iPop) {</pre>
    plint nextX = fX+c[iPop][0];
    plint nextY = fY+c[iPop][1];
    plint nextZ = fZ+c[iPop][2];
    cTensor.get(iX,iY,iZ)[iA] +=
      fTensor.get(nextX,nextY,nextZ)[iA];
  }
  cTensor.get(iX,iY,iZ)[iA] /= (T)q;
```


One time step: $t \rightarrow t + \delta t$

- CS $t \to t + \delta t$. CS $t \to t + \frac{\delta t}{2}$.

- .
- CS $t + \frac{\delta t}{2} \rightarrow t + \delta t$.
- .

- Time interpolation.
- Space interpolation.
- Complete fine. .
- Space interpolation.
- Complete fine. .
- Filter.
- Complete coarse. .

Recursive algorithm

```
void collideAndStream(plint iL) {
 lattice[iL].collideAndStream(); // collision coarse
 if (iL < (plint)(gridLevels.size()-1)) {</pre>
   // coarse to fine coupling
    lattice[iL].decomposeAndRescale(); // t+1, resc f_i in fine NTensor
    lattice[iL].timeInterp(); // interp at time t + 1/2
    collideAndStream(iL+1); // collision fine t->t+1/2
    lattice[iL].spatialInterp(); // at time t+1/2
    lattice[iL+1].recompose() // fine lattice recomposed at t+1/2
    lattice[iL+1].executeProcessors(); // BC, stats, ...
    collideAndStream(iL+1); // collision fine t+1/2->t+1
    lattice[iL].spatialInterp(); // at time t+1
    lattice[iL+1].recompose() // fine is OK
    lattice[iL+1].executeProcessors(); // BC, stats, ...
   // fine to coarse coupling
    lattice[iL+1].decomposeAndRescale(); // t+1, resc f_i in coarse NTensor
    lattice[iL].filter();
    lattice[iL].recompose(); // coarse is OK
 }
```


Questions?

MultiLevelScalar/Tensor fields

- Must have the same grid structure than MultiLevel3D.
- The interface is similar to MultiBlock3D.

Processing functionals

- Integrate/Apply must specify grid level.
- Reductive must specify grid level and provide "container" for the result:
 - More data is generated for fine level than coarse (twice more).

Spoiler

• Grid generation is a very complex topic.

Grid density

- Simplification: offload to external tool.
- Grid density: Scalar field $\in [0, 1]$.
- Generated manually or by analyzing "coarse" simulations:
 - Typically more points where the are "large" gradients.

Octree grid

- Start with cuboid.
- If grid density > threshold divide.
- Continue as long as the max number levels has not been reached.
- Balance the load on multiple processors.
- There are strong constraints:
 - Only factor of two at each interface.
 - Overlap blocks must be on the same processor as finer blocks.
 - Remove useless blocks (inside geometry).

The end

Questions?

Sorry I lied

Two live demos:

- Naive and non-naive grid generation for the cavity.
- Implemention of the grid-refined-3d-cavity.

- Three different exercises
 - 1. Familiarization with grid density.
 - 2. Generate alternative grid densities.
 - 3. Add functionalities for external flow simulations.
- Inspire yourself from existing code to add novel functionalities:
 - Read the code and understand it.
 - Develop new functionalities.
- Look for Exercise comments to find where to add functionalities.

Boxes

- Add/remove boxes to see how grid densities are built.
- Visualize grid density fields.

Modify the simpleSphere_exercise.xml to add boxes.

Spheres

- Inspired by the Boxes code create spherical grid densities.
- Look for Exercise comments to find the relevant places to add code.

 Modify the generateGridDensityFromSpheres_exercise.cpp to add spherical shapes grid density.

Exercises: flow past a sphere (1/2)

Reynolds stress definition

Reynolds decomposition

$$\vec{u} = \bar{\vec{u}} + \vec{u}',$$

\vec{u} and \vec{u}' mean and fluctuating part.

Reynolds stress tensor

$$\underline{T} = \overline{\vec{u}'\vec{u}'}.$$

Add Reynolds stress

- Compute $\overline{\vec{u}}$ by averaging \vec{u} over time.
- Once $\overline{\vec{u}}$ has converged:
 - Compute $\vec{u}' = \vec{u} \overline{\vec{u}}$.
 - Compute $\vec{u}'\vec{u}'$.
 - Average $\vec{u}'\vec{u}'$ over time to get <u>T</u>.
- Need integrateProcessingFunctional.

Add probes

- Want to measure values on special places.
- Use existing probes of Palabos: reductions.
- Input: position. Output: velocity, pressure, vorticity, ...
- Difficulty, one must decide on which level to apply the probes and store them.

Questions?