
Grid-refinement in Palabos

Palabos summer school - O. Malaspinas
June 9, 2021

Don’t hesitate to interrupt!

General introduction

• Palabos is a collaborative projet (v2.3 currently)
https://www.palabos.org.

• Merge requests are encouraged (19 contributors).
• Different means to communicate with us:

• Palabos forum https://palabos-forum.unige.ch/
• Discord server https://discord.com/invite/UEa9sEQ
• Gitlab repository https://gitlab.com/unigespc/palabos
• Twitter https://twitter.com/Palabos1

• Ressources:
• Palabos online seminar series

https://palabos.unige.ch/community/palabos-online-seminar-series/
• YouTube channel:

https://www.youtube.com/channel/UCO3qoJm3U8cu9D_lrqEHctQ
• Live streams (follow me for announces:

https://twitter.com/omalaspinas)

https://www.palabos.org
https://palabos-forum.unige.ch/
https://discord.com/invite/UEa9sEQ
https://gitlab.com/unigespc/palabos
https://twitter.com/Palabos1
https://palabos.unige.ch/community/palabos-online-seminar-series/
https://www.youtube.com/channel/UCO3qoJm3U8cu9D_lrqEHctQ
https://twitter.com/omalaspinas

Planned additions

Drafts (in the coming weeks)
• Jonathan’s WENO scheme.
• Francesco’s and Irina’s new boundary conditions.
• Christophe’s general force models.

WIP (in the coming months)
• Jonas’ GPU implementation.
• Orestis’ adjoint method.

Somewhere in the cloud (in the coming century)
• Sébastien Leclair’s color-gradient model.
• Adaptive grid refinement.
• Multi-phase grid refinement.

Grid-refinement generalities (1/2)

The need for variable resolution

Figure 1: Source: Wikipedia, https://bit.ly/38l3Kor

https://bit.ly/38l3Kor

Grid-refinement generalities (2/2)

Basics of grid refinement
• Geometrical considerations1

Multi–grid Multi–domain

• In Palabos: multi-domain2

1P. Sagaut, et. al, Multiscale And Multiresolution Approaches in Turbulence, Imperial
College Press, June 2006.
2D. Lagrava et al., Advances in multi-domain lattice Boltzmann grid refinement, J.
Comp. Phys., 231, p. 4808-4822, (2012)

Basics of grid refinement (1/2)

• The discretization LBM performed over a regular grid

• Introduction of non–uniform structure

• Discontinuity of the physical quantities
• Quantities must be rescaled (use of LB units)

• Transitions are only powers of two
Forbidden

Basics of grid refinement (2/2)

• Coarse grid: pc , ~uc , Sc , . . .

• Fine grid: pf , ~uf , S f , . . .

• Related via physical units: p, ~u, S, . . .

Pressure: p = δx2
c

δt2c
pc = δx2

f
δt2f

pf ,

Velocity: ~u = δxc
δtc

~uc = δxf
δtf

~uf ,

Strain: S = 1
δtc

Sc = 1
δtf

S f .

Questions on basics

Questions?

Rescaling of macroscopic quantities3 (1/2)

Density, pressure, and velocity
• We consider the convective scaling δt ∼ δx .

• Meaning δxc = δxf /2 then δtc = δtf /2.
• There are more time-steps on the fine lattice.
• p, ~u, and ρ are continuous at the interface.

• Pressure and Density (p = c2s ρ):

δx2
f

δt2f
pf = 4δx2

c
4δt2c

pf = δx2
c

δt2c
pc ,

pf = pc ⇔ ρf = ρc .

• Velocity:

δxf
δtf

~uf = 2δxc
2δtc

~uf = δxc
δtc

~uc ,

~uf = ~uc .

3A. Dupuis, B. Chopard, Theory and applications of an alternative lattice Boltzmann
grid refinement algorithm, Physical Review E, 67 (2003), p. 066707.

Rescaling of macroscopic quantities (2/2)

Rate of strain tensor
• We consider the convective scaling δt ∼ δx .

• Meaning δxc = δxf /2 then δtc = δtf /2.
• p, ~u, and ρ are continuous at the interface (~uf = ~uc , . . .).

• Strain:
1
δtf

S f = 2
δtc

S f = 1
δtc

Sc ,

S f = 1
2Sc .

Rescaling of populations (1/2)

Three different parts: fi , f (0)
i , and f neq

i

• Populations are represented as fi = f (0)
i + f neq

i

f (0)
i = wiρ

(
1 + ~ci · ~u

c2s
+ 1

2c4s
(~ci~ci − c2s I) : ~u~u)

)
.

• We know ρc = ρf , ~uc = ~uf .
• Equilibrium pop:

f (0)
i,c = f (0)

i,f .

• Non-equilibrium pop:
• f neq

i = fi − f (0)
i is not continuous.

• f neq
i,c = αf neq

i,f .

Rescaling of populations (2/2)

Let us start with the BE
BE equation with BGK approximation (f (~x ,~c, t))

(∂t + ~c · ~∇~x)f = −1
τ

(f − f (0))

Velocity discretization
Finite velocity BE equation (f (~x ,~ci , t) ≡ fi (~x , t))

(∂t + ~ci · ~∇~x)fi = −1
τ

(fi − f (0)
i)

We rewrite it
dfi
dt = −1

τ
(fi − f (0)

i)

A priori determination of α (1/2)

Space-time discretization
After numerical integration along characteristics

f +
i − fi = − δt2τ

(
f +
i − f (0)

i
+

+ fi − f (0)
i

)
,

“+” : function evaluated at position ~x + ~ciδt and time t + δt. With the
change of variable

f̄i = fi + δt
2τ

(
fi − f (0)

i

)
,

τ̄ = 2τ + δt
2δt ,

we obtain
f̄ +
i = f̄i −

1
τ̄

(
f̄i − f (0)

i

)
.

A priori determination of α (2/2)

Non-equilibrium distribution

Subtracting f (0)
i from f̄i = fi + δt

2τ

(
fi − f (0)

i

)
f̄ neq
i =

(
2τ + δt

2τ

)
f neq
i ⇔ f neq

i =
(

2τ
2τ + δt

)
f̄ neq
i ,

Continuity of f neq
i

Ensure continuity of “bare” quantities on coarse and fine grid(
2τ

2τ + δtc

)
f̄ neq
i,c =

(
2τ

2τ + δtf

)
f̄ neq
i,f ,

δtc
τ̄c

f̄ neq,c
i = δtf

τ̄f
f̄ neq,f
i ,

α = δtf
δtc

τ̄c
τ̄f

Rescaling in Palabos (1/4)

From coarse to fine
• Decompose: from fi,c , compute ρc , ~uc , f neq

i,c .

ρc =
∑

i
fi,c , ~uc =

∑
i

fi,c~ci/rhoc , f neq
i,c = fi,c − f (0)

i,c .

• Rescale:
ρf = ρc , ~uf = ~uc , f neq

i,f = f neq
i,c /α.

• Recompose: from ρf , ~uf , f neq
i,f compute fi,f .

fi,f = f (0)
i (ρf , ~uf) + f neq

i,f .

Rescaling in Palabos (2/4)

From coarse to fine
• Decompose: from fi,f , compute ρf , ~uf , f neq

i,f .

ρf =
∑

i
fi,f , ~uf =

∑
i

fi,f~ci/rhof , f neq
i,f = fi,f − f (0)

i,f .

• Rescale:
ρc = ρf , ~uc = ~uf , f neq

i,c = αf neq
i,f .

• Recompose: from ρc , ~uc , f neq
i,c compute fi,c .

fi,c = f (0)
i (ρc , ~uc) + f neq

i,c .

Rescaling in Palabos (3/4)

Some code
class Rescaler {

// Rescales rel. freq. (potentially many of them)
virtual Array<T,Descriptor<T>::q> computeRescaledRelFreq(

const Array<T,Descriptor<T>::q> &relFreq, T xDt) const;
// Recale the decomposed quantities
virtual void rescale(const Dynamics<T,Descriptor> &dyn,

T xDt, std::vector<T> &rawData) const = 0;

// Decomposes a cell into rho, u, fneq, and rescales it
virtual void decomposeAndRescale(

Cell<T,Descriptor> const& cell, T xDt, plint order,
std::vector<T> &decompAndRescaled) const;

// Other things (constructor, ...)
}

Rescaling in Palabos (4/4)

For BGK (simplified)
class Rescaler {

// xDt -> 2 other 1/2
virtual void rescale(const Dynamics<T,D> &dyn,

T xDt, std::vector<T> &rawData) const {
// rawData[0] = rho, rawData[1-3] = u,
// rawData[4-q] = fneq
Array<T, D<T>::q> resRelFreq =

this->computeRescaledRelFreq(relFreq, xDt);
for (plint iPop = 0;

iPop < SymmetricTensorImpl<T,D<T>::d>::n; ++iPop) {
plint iA = 1+D<T>::d+iPop;
T prefactor = relFreq[iA] / resRelFreq[iA] * xDt;
rawData[iA] *= prefactor;

}
}

}

Questions on rescaling

Questions?

Overlapping zone

Coupling between refinement zones
• Two way coupling to complete missing information.

• Need for a buffering zone: “overlap”.
• In Palabos the thickness is one coarse node.

Overlapping in Palabos (1/3)

Overlap and interface

Fluid blocks

Overlap block
Interface

• Communication in overlaps
• Implemention: NTensorFields
• Containing rawData
• Efficiency vs “ease” of impl.

Complex overlap

Overlap blocks

Overlapping in Palabos (2/3)

Overlap and interface

Fluid blocks

Overlap block
Interface

• Complex data struct.
• Sparse data struct.
• Complex interface geom.

MultiLevel3D
Each grid level contains

// Lattice at that level
MultiBlockLattice3D<T, D> *lattice;
// Buffer zones
MultiNTensorField3D<T> *decomp_t0,

*decomp_t12,
*decomp_t1,
*decomp_fine;

Coupling involves different operations on the interface.

Overlapping in Palabos (3/3)

MultiLevel3D
• DecomposeAndRescaleFunctional3D

Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);
egine.decomposeAndRescale(cell, xDt, order,

decompAndRescaled);
for (iA = 0; iA < decompAndRescaled.size(); ++iA) {

tensor.get(oX,oY,oZ)[iA] = decompAndRescaled[iA];
}

• RecomposeFunctional3D

Cell<T,Descriptor> &cell = lattice.get(iX,iY,iZ);
for (iA = 0; iA < nDim; ++iA) {

decomposed[iA] =
tensor.get(oX,oY,oZ)[iA];

}
cell.getDynamics().

recompose(cell, decomposed, order);

Two-dimensional interface

Coarse to fine coupling

Missing information
• One must “increase” the information.

• Copy on superposed nodes.
• Interpolate missing info.
• Temporal and spatial interpolations.

Coarse to fine coupling: temporal interpolation

Need time interpolation for t = t + δt/2.

Linear time interpolation (second order)

fi (~x , t + δt/2) = fi (~x , t + δt) + fi (~x , t)
2 .

Coarse to fine coupling: spatial interpolation

What interpolation ?
• Linear interpolation (second order)

• Cubic interpolation (fourth order)

• Which one to chose?

Cubic interpolation.

Importance of the spatial interpolation (1/2)

Second order interpolation is not enough
• Numerical proof using a simple 2D Poiseuille flow
• Compare linear spatial interpolation and cubic spatial interpolation
• Setup of the simulation

Importance of the spatial interpolation (2/2)

Results
• A linear pressure gradient is expected.
• The pressure gradient of the simulation (both interpolations)

• There is a loss of mass on the interface (when τ → 1/2, or high Re)!
• No more second order accuracy

Questions on interpolations

Questions?

Coarse to fine coupling in Palabos

Processing functionals
• Couplings is done through Processing Functionals.
• Ordering through negative levels (executed explicitly).

Spatial processing functionals
• From coarse MultiNTensorField3D to fine MultiNTensorField3D

CopyAndSpatialInterpolationPlaneFunctional3D
CopyAndSpatialInterpolationEdgeFunctional3D
CopyAndSpatialInterpolationCornerFunctional3D

Temporal functionals
• From fine MultiNTensorField3D to fine MultiNTensorField3D

TemporalInterpolationFunctional3D

Fine to coarse coupling

Filtering
The fine grid has “too much” information

Averaging over all lattice directions

f neq
i,f (~x c

f→c , t) = 1
q

q−1∑
i=0

f neq
i,f (~x c

f→c + ~ci , t)

Fine to coarse coupling in Palabos

Filtering functional
for (plint iA = 0; iA < minIndex; ++iA) {

// rho and u may not be filtered (only copied)
cTensor.get(iX,iY,iZ)[iA] = fTensor.get(fX,fY,fZ)[iA];

}
for (plint iA = minIndex; // only fneq is

iA < nDim-D<T>::ExternalField::numScalars; ++iA) {
cTensor.get(iX,iY,iZ)[iA] = fTensor.get(fX,fY,fZ)[iA];
for (plint iPop = 1; iPop < q; ++iPop) {

plint nextX = fX+c[iPop][0];
plint nextY = fY+c[iPop][1];
plint nextZ = fZ+c[iPop][2];
cTensor.get(iX,iY,iZ)[iA] +=

fTensor.get(nextX,nextY,nextZ)[iA];
}
cTensor.get(iX,iY,iZ)[iA] /= (T)q;

}

Algorithm

One time step: t → t + δt
• CS t → t + δt.
•
•
•
•
•
•

• CS t → t + δt
2 .

•
•
• CS t + δt

2 → t + δt.
•
•
•

• Time interpolation.
• Space interpolation.
• Complete fine.
• Space interpolation.
• Complete fine.
• Filter.
• Complete coarse.

The algorithm in Palabos

Recursive algorithm
void collideAndStream(plint iL) {

lattice[iL].collideAndStream(); // collision coarse
if (iL < (plint)(gridLevels.size()-1)) {

// coarse to fine coupling
lattice[iL].decomposeAndRescale(); // t+1, resc f_i in fine NTensor
lattice[iL].timeInterp(); // interp at time t + 1/2
collideAndStream(iL+1); // collision fine t->t+1/2
lattice[iL].spatialInterp(); // at time t+1/2
lattice[iL+1].recompose() // fine lattice recomposed at t+1/2
lattice[iL+1].executeProcessors(); // BC, stats, ...
collideAndStream(iL+1); // collision fine t+1/2->t+1
lattice[iL].spatialInterp(); // at time t+1
lattice[iL+1].recompose() // fine is OK
lattice[iL+1].executeProcessors(); // BC, stats, ...
// fine to coarse coupling
lattice[iL+1].decomposeAndRescale(); // t+1, resc f_i in coarse NTensor
lattice[iL].filter();
lattice[iL].recompose(); // coarse is OK

}
}

Questions on the algorithm

Questions?

Data analysis in Palabos

MultiLevelScalar/Tensor fields
• Must have the same grid structure than MultiLevel3D.
• The interface is similar to MultiBlock3D.

Processing functionals
• Integrate/Apply must specify grid level.
• Reductive must specify grid level and provide “container” for the

result:
• More data is generated for fine level than coarse (twice more).

Grid generation (1/2)

Spoiler
• Grid generation is a very complex topic.

Grid density
• Simplification: offload to external tool.
• Grid density: Scalar field ∈ [0, 1].
• Generated manually or by analyzing “coarse” simulations:

• Typically more points where the are “large” gradients.

Grid generation (2/2)

Octree grid
• Start with cuboid.
• If grid density > threshold divide.
• Continue as long as the max number levels has not been reached.
• Balance the load on multiple processors.
• There are strong constraints:

• Only factor of two at each interface.
• Overlap blocks must be on the same processor as finer blocks.
• Remove useless blocks (inside geometry).

The end

Questions?

Live stream

Sorry I lied
Two live demos:

• Naive and non-naive grid generation for the cavity.
• Implemention of the grid-refined-3d-cavity.

Exercises

• Three different exercises
1. Familiarization with grid density.
2. Generate alternative grid densities.
3. Add functionalities for external flow simulations.

• Inspire yourself from existing code to add novel functionalities:
• Read the code and understand it.
• Develop new functionalities.

• Look for Exercise comments to find where to add functionalities.

Exercises: Grid density (1/2)

Boxes
• Add/remove boxes to see how grid densities are built.
• Visualize grid density fields.

• Modify the simpleSphere_exercise.xml to add boxes.

Exercises: Grid density (2/2)

Spheres
• Inspired by the Boxes code create spherical grid densities.
• Look for Exercise comments to find the relevant places to add code.

• Modify the generateGridDensityFromSpheres_exercise.cpp to
add spherical shapes grid density.

Exercises: flow past a sphere (1/2)

Reynolds stress definition
• Reynolds decomposition

~u = ~̄u + ~u′,

~̄u and ~u′ mean and fluctuating part.
• Reynolds stress tensor

T = ~u′~u′.

Add Reynolds stress
• Compute ~̄u by averaging ~u over time.
• Once ~̄u has converged:

• Compute ~u′ = ~u − ~̄u.
• Compute ~u′~u′.
• Average ~u′~u′ over time to get T .

• Need integrateProcessingFunctional.

Exercises: flow past a sphere (2/2)

Add probes
• Want to measure values on special places.
• Use existing probes of Palabos: reductions.
• Input: position. Output: velocity, pressure, vorticity, . . .
• Difficulty, one must decide on which level to apply the probes and

store them.

The real end

Questions?

