
Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Palabos Online Seminar Series
5th of May 2021

Jonas Latt - Université de Genève (UniGe)

• Introducing the Palabos Online Seminar Series

• Presentation of the Palabos project “From CPU
to GPU in 80 days”

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

The Palabos Online Seminar Series

Topic: Presentation of work achieved with Palabos

Presenters: Presentations are open to the community

Dates: The first Wednesday of every month, at 10 am CET or at 5
pm CET.

Further information:
https://palabos.unige.ch/community/palabos-online-seminar-
series/

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

From CPU to GPU in 80 days

Goal: Port substantial parts of Palabos to GPU

Dates: Project starts today, ends on 23rd of July

Palabos fork: gitlab.com/unigehpfs/palabos

Community involvement: Throughout the
project, try it out, provide feedback

Project website: palabos.unige.ch/community/cpu-gpu-80-days/

https://gitlab.com/unigehpfs/palabos
https://palabos.unige.ch/community/cpu-gpu-80-days/

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Overview: the general ideas

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Idea: transfer existing application to GPU

// Allocate memory for the populations
MultiBlockLattice3D<T, DESCRIPTOR> lattice (

nx, ny, nz,
new BGKdynamics<T,DESCRIPTOR>(omega));

// Specify type of boundary condition
OnLatticeBoundaryCondition3D<T,DESCRIPTOR>*

boundaryCondition =
createLocalBoundaryCondition3D<T,DESCRIPTOR>();

// Create initial and boundary condition
cavitySetup(lattice, parameters,

*boundaryCondition);

// Loop over main time iteration.
for (plint iT=0; iT<20; ++iT) {

lattice.collideAndStream();
}

The initialization does not need to
be changed: it will be executed on
CPU

For the time iterations: transfer data to
the AcceleratedLattice (on GPU)

AcceleratedLattice<T, DESCRIPTOR> aLattice(lattice);
// Loop over main time iteration.
for (plint iT=0; iT<20; ++iT) {

aLattice.collideAndStream();
}

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Structure of the project

Work package 1: Setup of test cases

Work package 2: AcceleratedLattice on CPU

Work package 3: AcceleratedLattice on GPU

Work package 4: Framework for dynamics objects and data
processors

Work package 5: Improvement, acceleration

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Parallelism in Palabos, currently

MPI
Proc. 0

MPI
Proc. 1

MPI
Proc. 2

MPI
Proc. 3

MPI
Proc. 4

MPI
Proc. 5

MPI
Proc. 6

MPI
Proc. 7

MPI
Proc. 8

MPI
Proc. 9

… …

Node 0 Node 1 Node 2

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Our project: Hybrid parallelism

Thread 0 Thread 1

Thread 2 Thread 3

MPI
Proc. 0

Node 0

Parallel algorithms or
OpenMP

Thread 0 Thread 1

Thread 2 Thread 3

MPI
Proc. 1

Node 1

Parallel algorithms or
OpenMP …

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Our project: Hybrid parallelism

GPU 0 GPU 1

Node 0

MPI
Proc. 0

Parallel algorithms or
OpenMP or
OpenACC

…

MPI
Proc. 1

GPU 0 GPU 1

Node 1

MPI
Proc. 2

Parallel algorithms or
OpenMP or
OpenACC

MPI
Proc. 3

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

The test cases
1. Taylor-Green vortex [Uniform collision model, no boundary condition].

2. Resolved flow in a porous media [Mesh-aligned inflow and outflow,
bounce-back nodes].

3. Multi-component flow segregation with pseudo-potential approach
[Multi-phase coupling, no boundary condition].

4. Flow around a sphere (no mesh refinement) [Off-lattice boundary
condition around the obstacle, subgrid-scale model].

5. Flow inside a tube (channel with circular cross-section) [Off-lattice
boundary condition around the obstacle, subgrid-scale model].

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Implementation attempt:
C++17 Parallel Algorithms

vector<double> v = { 1, 2, 3, 4 }, w(4);
transform(execution::par, begin(v), end(v), begin(w),

[](double const& element) { return 2. * element; });
// w is {2, 4, 6, 8}

Lambda function: defines the operation to
be applied to elements of v.

Read from v, write into w

Execution policy

nvc++ -stdpar -o program program.cpp

#include <execution>

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Application: The STLBM project

https://gitlab.com/unigehpfs/stlbm

400 x 400 x 400 domain
(homogeneous mesh)

560k iterations

2:40 hours on a A100

Reynolds: 10’000

LB model: Recursive-regularized
with omega_bulk = 1, no
subgrid-scale model.

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Performance

200x200x200 domain
Double-precision
A100 GPU

“Mega-LUPS”:
Million lattice node
updates per second

https://gitlab.com/unigehpfs/stlbm

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Performance vs. Peak performance

200x200x200 domain
Double-precision
A100 GPU

https://gitlab.com/unigehpfs/stlbm

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Performance vs. Cuda code

Taken from the CuBoltz
project

Provided in the STLBM
repository

200x200x200 domain
Double-precision
A100 GPU

https://gitlab.com/unigehpfs/stlbm

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Some technical details

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Data Layout

f0 f1 f2 f3 f4 f5 f6 f7 f8 f0 f1 f2 f3 f4 f5 f6 f7 f8 f0 f1 f2 …

Array-of-Structure

f0 f0 f0 … f1 f1 f1 … f2 f2 f2 … f3 f3 f3 … f4 f4 f4 … f5 …

Structure-of-Array

Pointer to
first cell

Pointer to
second cell

Cell needs to be
assembled PULL Operation

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Data Layout

Array-of-Structure (“old Palabos”)

Cell* cell = &lattice[i];
collide(*cell);

Structure-of-Array (“new Palabos”)

Cell cell;
PULL(cell);
collide(cell);
PUSH(cell);

Also: we need the PULL and
PUSH step because data is
stored in different places at
even and odd time steps (see
description of “AA Pattern” in
STLBM project).

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Challenge: rewrite data processors

void BoussinesqThermalProcessor3D<T,FluidDescriptor,TemperatureDescriptor>::process (
Box3D domain,
BlockLattice3D<T,FluidDescriptor>& fluid,
BlockLattice3D<T,TemperatureDescriptor>& temperature)

{

for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {

for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
T *u = temperature.get(iX+offset.x,iY+offset.y,iZ+offset.z).getExternal(velOffset);
Array<T,FluidDescriptor<T>::d> vel;
fluid.get(iX,iY,iZ).computeVelocity(vel);
vel.to_cArray(u);

T *force = fluid.get(iX,iY,iZ).getExternal(forceOffset);
T localTemperature = temperature.get(iX+offset.x,iY+offset.y,iZ+offset.z).computeDensity();
const T diffT = localTemperature - T0;
for (pluint iD = 0; iD < D::d; ++iD)
{

force[iD] = gravOverDeltaTemp[iD] * diffT;
}

}
}

}
}

Fortunately: data processors often refer to templated
algorithms which we can reuse in the AcceleratedLattice.

Loop needs to be
distributed to GPU threads

Cell access here assumes
array-of-structure

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Challenge: rewrite Dynamics classes

cell.getDynamics().collide(cell);

A typical Palabos line of code:

• Here, we access the dynamic type of the local collision model.
• This is dynamic polymorphism: every cell has its own collision model.
• Collision models can be nested, too.
• GPUs don’t like polymorphism, or function calls through pointers, at all.

The only solution: write out the required collision terms in a non-polymorphic way.

Fortunately: dynamics classes often refer to templated algorithms which we can reuse.

Jonas Latt Palabos Online Seminar Series, 5th of May 2021

Conclusions

• Our project: port as much as possible of Palabos from CPU to
GPU.

• Many unknowns: Parallel algorithms or OpenMP / OpenACC ?
How much code needs to be rewritten ?

• A community project: stay tuned, try it out, interact.

