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Palabos Online Seminar Series
5th of May 2021

Jonas Latt - Université de Genève (UniGe)

• Introducing the Palabos Online Seminar Series

• Presentation of the Palabos project “From CPU 
to GPU in 80 days”
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The Palabos Online Seminar Series

Topic: Presentation of work achieved with Palabos

Presenters: Presentations are open to the community

Dates: The first Wednesday of every month, at 10 am CET or at 5 
pm CET.

Further information:
https://palabos.unige.ch/community/palabos-online-seminar-
series/



Jonas Latt     Palabos Online Seminar Series, 5th of May 2021 

From CPU to GPU in 80 days

Goal: Port substantial parts of Palabos to GPU

Dates: Project starts today, ends on 23rd of July

Palabos fork: gitlab.com/unigehpfs/palabos

Community involvement: Throughout the 
project, try it out, provide feedback

Project website: palabos.unige.ch/community/cpu-gpu-80-days/

https://gitlab.com/unigehpfs/palabos
https://palabos.unige.ch/community/cpu-gpu-80-days/
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Overview: the general ideas
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Idea: transfer existing application to GPU

// Allocate memory for the populations
MultiBlockLattice3D<T, DESCRIPTOR> lattice (

nx, ny, nz,
new BGKdynamics<T,DESCRIPTOR>(omega) );

// Specify type of boundary condition
OnLatticeBoundaryCondition3D<T,DESCRIPTOR>*

boundaryCondition =
createLocalBoundaryCondition3D<T,DESCRIPTOR>();

// Create initial and boundary condition
cavitySetup(lattice, parameters,

*boundaryCondition);

// Loop over main time iteration.
for (plint iT=0; iT<20; ++iT) {

lattice.collideAndStream();
}

The initialization does not need to 
be changed: it will be executed on 
CPU 

For the time iterations: transfer data to 
the AcceleratedLattice (on GPU)

AcceleratedLattice<T, DESCRIPTOR> aLattice(lattice);
// Loop over main time iteration.
for (plint iT=0; iT<20; ++iT) {

aLattice.collideAndStream();
}
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Structure of the project

Work package 1: Setup of test cases

Work package 2: AcceleratedLattice on CPU

Work package 3: AcceleratedLattice on GPU

Work package 4: Framework for dynamics objects and data 
processors

Work package 5: Improvement, acceleration
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Parallelism in Palabos, currently

MPI 
Proc. 0

MPI 
Proc. 1

MPI 
Proc. 2

MPI 
Proc. 3

MPI 
Proc. 4

MPI 
Proc. 5

MPI 
Proc. 6

MPI 
Proc. 7

MPI 
Proc. 8

MPI 
Proc. 9

… …

Node 0 Node 1 Node 2
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Our project: Hybrid parallelism

Thread 0 Thread 1

Thread 2 Thread 3

MPI 
Proc. 0

Node 0

Parallel algorithms or
OpenMP

Thread 0 Thread 1

Thread 2 Thread 3

MPI 
Proc. 1

Node 1

Parallel algorithms or
OpenMP …
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Our project: Hybrid parallelism

GPU 0 GPU 1

Node 0

MPI 
Proc. 0

Parallel algorithms or
OpenMP or
OpenACC

…

MPI 
Proc. 1

GPU 0 GPU 1

Node 1

MPI 
Proc. 2

Parallel algorithms or
OpenMP or
OpenACC

MPI 
Proc. 3
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The test cases
1. Taylor-Green vortex [Uniform collision model, no boundary condition].

2. Resolved flow in a porous media [Mesh-aligned inflow and outflow, 
bounce-back nodes].

3. Multi-component flow segregation with pseudo-potential approach 
[Multi-phase coupling, no boundary condition].

4. Flow around a sphere (no mesh refinement) [Off-lattice boundary 
condition around the obstacle, subgrid-scale model].

5. Flow inside a tube (channel with circular cross-section) [Off-lattice 
boundary condition around the obstacle, subgrid-scale model].
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Implementation attempt:
C++17 Parallel Algorithms

vector<double> v = { 1, 2, 3, 4 }, w(4);
transform( execution::par, begin(v), end(v), begin(w),

[](double const& element) { return 2. * element; } );
// w is {2, 4, 6, 8}

Lambda function: defines the operation to 
be applied to elements of v.

Read from v, write into w

Execution policy

nvc++ -stdpar -o program program.cpp

#include <execution>
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Application: The STLBM project

https://gitlab.com/unigehpfs/stlbm

400 x 400 x 400 domain
(homogeneous mesh)

560k iterations

2:40 hours on a A100

Reynolds: 10’000

LB model: Recursive-regularized 
with omega_bulk = 1, no 
subgrid-scale model.
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Performance

200x200x200 domain
Double-precision
A100 GPU

“Mega-LUPS”:
Million lattice node 
updates per second

https://gitlab.com/unigehpfs/stlbm
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Performance vs. Peak performance

200x200x200 domain
Double-precision
A100 GPU

https://gitlab.com/unigehpfs/stlbm
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Performance vs. Cuda code

Taken from the CuBoltz
project

Provided in the STLBM 
repository

200x200x200 domain
Double-precision
A100 GPU

https://gitlab.com/unigehpfs/stlbm
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Some technical details
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Data Layout

f0 f1 f2 f3 f4 f5 f6 f7 f8 f0 f1 f2 f3 f4 f5 f6 f7 f8 f0 f1 f2 …

Array-of-Structure

f0 f0 f0 … f1 f1 f1 … f2 f2 f2 … f3 f3 f3 … f4 f4 f4 … f5 …

Structure-of-Array

Pointer to 
first cell

Pointer to 
second cell

Cell needs to be 
assembled PULL Operation
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Data Layout

Array-of-Structure (“old Palabos”)

Cell* cell = &lattice[i];
collide(*cell);

Structure-of-Array (“new Palabos”)

Cell cell;
PULL(cell);
collide(cell);
PUSH(cell);

Also: we need the PULL and 
PUSH step because data is 
stored in different places at 
even and odd time steps (see 
description of “AA Pattern” in 
STLBM project).
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Challenge: rewrite data processors

void BoussinesqThermalProcessor3D<T,FluidDescriptor,TemperatureDescriptor>::process (
Box3D domain,
BlockLattice3D<T,FluidDescriptor>& fluid,
BlockLattice3D<T,TemperatureDescriptor>& temperature )

{

for (plint iX=domain.x0; iX<=domain.x1; ++iX) {
for (plint iY=domain.y0; iY<=domain.y1; ++iY) {

for (plint iZ=domain.z0; iZ<=domain.z1; ++iZ) {
T *u = temperature.get(iX+offset.x,iY+offset.y,iZ+offset.z).getExternal(velOffset);
Array<T,FluidDescriptor<T>::d> vel;
fluid.get(iX,iY,iZ).computeVelocity(vel);
vel.to_cArray(u);

T *force = fluid.get(iX,iY,iZ).getExternal(forceOffset);
T localTemperature = temperature.get(iX+offset.x,iY+offset.y,iZ+offset.z).computeDensity();
const T diffT = localTemperature - T0;
for (pluint iD = 0; iD < D::d; ++iD) 
{

force[iD] = gravOverDeltaTemp[iD] * diffT;
}

}
}

}
}

Fortunately: data processors often refer to templated 
algorithms which we can reuse in the AcceleratedLattice.

Loop needs to be 
distributed to GPU threads

Cell access here assumes 
array-of-structure
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Challenge: rewrite Dynamics classes

cell.getDynamics().collide(cell);

A typical Palabos line of code:

• Here, we access the dynamic type of the local collision model.
• This is dynamic polymorphism: every cell has its own collision model.
• Collision models can be nested, too.
• GPUs don’t like polymorphism, or function calls through pointers, at all.

The only solution: write out the required collision terms in a non-polymorphic way.

Fortunately: dynamics classes often refer to templated algorithms which we can reuse.
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Conclusions

• Our project: port as much as possible of Palabos from CPU to
GPU.

• Many unknowns: Parallel algorithms or OpenMP / OpenACC ?
How much code needs to be rewritten ?

• A community project: stay tuned, try it out, interact.


